10138

Сущность и соотношение кумулятивизма и антикумулятивизма как теоретически моделей развития науки

Доклад

Логика и философия

Сущность и соотношение кумулятивизма и антикумулятивизма как теоретически моделей развития науки. Проще всего представить развитие науки как рост знаний: наука на каждом историческом этапе приобретает некоторое количество сведений откладывает их в свою копилку на...

Русский

2013-03-21

38 KB

41 чел.

Сущность и соотношение кумулятивизма и антикумулятивизма как теоретически моделей развития науки.

Проще всего представить развитие науки как рост знаний: наука на каждом историческом этапе приобретает некоторое количество сведений, откладывает их в свою копилку, на следующем этапе углубляет и дополняет эти знания и добавляет к ним новые.

Концепции, которые рассматривают развитие науки в п.о. как накопление знаний, добавление нового к уже имеющемуся, относительно равномерный рост, называются кумулятивистскими (от «кумуляция» – накопление). С т.з. кумулятивизма, в науке каждый следующий шаг делается с опорой на предыдущие достижения; новое знание надстраивается над старым, включает его в себя, при этом прибавление нового знания ничего существенного не меняет в уже имеющемся знании, признанном истинным (история науки статична); наука на каждом этапе – сумма всех прежних и новых знаний.

Кумулятивизм неявно предполагает, что научная идея либо достаточно быстро обнаруживает свою несостоятельность, либо уж остается на века.  Больцман: «Все точно установленные опытные факты остаются вечно неизменными. Они м.б. в крайнем случае расширены. дополнены, к ним могут присоединиться новые данные, но они не м.б. целиком опровергнуты… Лишь в редких случаях данные, считавшиеся сначала фактом, оказываются ошибочными. И в этих редких случаях ошибки открываются весьма скоро и не оказывают большого влияния на научное здание в целом».

Из кумулятивизма неявно исходила вся ранняя эмпирическая история науки. У него были свои основания.

Тезис Бернала: «Именно этот кумулятивный характер науки отличает ее от других важнейших институтов человечества, таких, как религия, право, философия и искусство», т.к.: к созданному в других областях мы можем обратиться непосредственно, вне зависимости от времени создания они оказывают на нас воздействие, а в науке прошлое – в прошлом.

Тезис Маха: принятые представления д.б. стабильными, потому что стабильна природа. «Принцип непрерывности»: «То, что является свойством природы, является таковым всегда и везде». Основное содержание научной деятельности – представить непонятное как понятное и подчиняющееся тем же законам.

Тезис Дюгема:  в науке любое открытие всегда содержательно подготовлено предшествующими разработками. «Великие открытия почти всегда являются плодом подготовки, медленной и сложной, осуществляемой на протяжении веков. Доктрины, проповедуемые наиболее могучими мыслителями, появляются в результате множества усилий, накопленных массой ничем не примечательных работников. Даже те, кого принято называть творцами, - галилеи, ньютоны, декарты, - не сформулировали никакой доктрины, которая не была бы связана бесчисленным количеством нитей с учениями их предшественников. Слишком упрощенная история заставляет нас восхищаться ими и видеть в них колоссов, не имеющих корней в прошлом, непостижимых и чудовищных в своей изолированности. История, несущая больше информации, дает нам возможность проследить длинный ряд развития, итогом которого они являются. Как и природа, наука не делает скачков».

Тезис Сартона: основу развития науки составляет освоение наследия; чем более полным оно будет, тем больших результатов добьется ученый, а гений – тот, кто охватит взглядом все. Ученый «стоит на плечах гигантов». В науке очевидна внутренняя логика развития идей – случайности играют в ней меньшую роль, чем в любой другой деятельности. «Созревшее» открытие обязательно будет сделано, отсюда возможность параллельных открытий (теория Дарвина). «Научная деятельность – единственная, которая несомненно и очевидно прогрессивна и кумулятивна».

Итак, в развитии науки следует, безусловно, считать значимым момент сохранения знания,  роста на основе предыдущих достижений, т.е. существования научных традиций в широком смысле этого слова. Понятие «традиция» (от латинского «передача») охватывает все виды преемственности. Традиции есть во всех сферах культуры, в них происходит фиксация опыта, они выступают основанием деятельности, в т.ч. творческой, через них осуществляется конституирование социума и социализация людей. Функции традиций в науке: научные традиции выступают как накапливающаяся совокупность знаний, фактов, идей, гипотез; они служат источником новых идей и новых направлений деятельности, определяют стратегию и программы поиска, они задают методологию научной работы, они служат формой организации профессиональных сообществ и приобщения новичков, наконец, они выполняют селективную функцию, т.е. служат механизмом отказа от неприемлемых (и уже отработанных) вариантов.  

Но можно ли утверждать, что рост, накопление и есть основная закономерность развития науки? Более углубленное знакомство с реальной историей науки обнаруживает неравномерность ее развития.  В истории науки существуют разнородность темпов роста науки, периоды застоя, периоды регресса науки (напр., раннее средневековье в Европе); разветвление линий научного развития и  различия в темпах роста отдельных наук. Самое главное же заключается в том, что периодически в развитии науки возникают кризисы, в ходе которых достигнутое знание переосмысливается и критикуется, пересмотру могут подвергнуться даже традиционные и устоявшиеся идеи, глубинные основания науки. Кроме того, можно заметить, что исторически сильно меняются и способы научной деятельности, принятые приемы и процедуры исследования, методы и формы доказательства, поэтому признанное доказанным и истинным в одну эпоху может опровергаться в следующий период.

Поэтому расширенной и более точной является теоретическая концепция, которая не сводит историю науки к кумуляции - некумулятивная модель развития науки. Она базируется на положении: в истории науки сменяют друг друга две формы ее роста: кумулятивное накопление, увеличение знания и «перерывы постепенности», краткие периоды, когда система научных представлений о мире существенно изменяется, пересматриваются основания науки, главные объяснительные принципы, ключевые методы научной деятельности. Такие периоды называются научными революциями, они подобны социальным революциям, в ходе которых изменяется общественная система. Особо отметим: не любое новое открытие в науке характеризуется как научная революция, как в обществе есть различие между реформой, происходящей без изменения социального строя, и революцией, преобразующей все стороны общественной жизни. Научная революция – не просто крупное открытие, а весь комплекс изменений, происходящих в науке под влиянием принципиально новых идей. Научная революция может соединиться с технической (НТР), но это характерно только для ХХ в., а вообще научная революция происходит внутри науки и с техникой не обязательно связана.

Пример научной революции дает А. Койре. Он исследует конкретную ситуацию в истории науки – утверждение гелиоцентрической системы в эпоху Коперника и Галилея («Галилеевские этюды») – и показывает, что, когда эта идея утверждается, она производит настоящий переворот в мировоззрении. В ходе этой революции произошло  «разрушение космоса» (вместо мира вокруг Земли – бесконечная Вселенная) и «геометризация пространства» (вместо системы мест – гомогенная и бесконечная протяженность). Следствиями были отказ от идеи Бога, от таких понятий в науке, как гармония, совершенство, предназначение, полный разрыв с миром ценностей. Это не просто новая теория – это новый тип мышления. Койре говорит, что произошла «мутация человеческого интеллекта», и такие мутации происходят время от времени. В результате история все время преобразуется: «Ничто не меняется так быстро, как неподвижное прошлое».


 

А также другие работы, которые могут Вас заинтересовать

41312. Отладка ППО МК серии МС68 5.11 MB
  Б окне 2 на передний план выходит вкладка Brekpoints nd Trcepoints где теперь будут отображаться все точки останова. 2 Практическая часть Применение точек останова Пошаговый метод отладки удобен для отладки небольших несложных программ или отдельных участков большой программы. Для того чтобы проверить правильность выполнения всего этого цикла в пошаговом режиме пришлось бы очень долго щелкать мышкой В подобных случаях применяются точки останова Brekpoint. Точка останова это специальная метка...
41313. Изучение процесса ввода информации с датчиков 3.74 MB
  Такую характеристику внешней среды как температура приходится измерять довольно часто.Если говорить высоким стилем, то датчики создают «окно», сквозь которое микропроцессорные системы наблюдают за внешним миром. В этой рабрте рассматриваются различные типы датчиков, их применение и возможность сопряжения с микропроцессорами.
41314. Вывод управляющих сигналов 356.5 KB
  Соответствующий фрагмент программы написанной на Psclе будет выглядеть следующим образом: Создание проекта см. Если уже есть файл с текстом программы на Ассемблере и просто необходимо создать проект а затем подключить туда готовый программный файл снимите соответствующую галочку. Оно должно содержать имя файла куда будет записываться текст программы. При выборе этого элемента диалог создания проекта будет автоматически запускаться каждый раз при запуске программы...
41315. Использование средств ИС РПО для отладки взаимодействия с объектами управления 1.14 MB
  В качестве схемы сопряжения с линией связи ССЛС в интерфейсе RS232С удобно использовать интегральную схему типа MX232 Перечисленные последовательные интерфейсы реализуют радиальную стру-ктуру подключения. Это означает, что для подключения к каждому МПУ не-обходимо реализовать свой последовательный интерфейс:
41316. Изучение принципов организации аппаратного интерфейса USB. 987 KB
  Практически исследовать принципы организации аппаратного интерфейса USB Время: 2 часа Оборудование: ПК ПО. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: принципы организации аппаратного интерфейса USB Методические указания по выполнению практической работы: Последовательность выполнения работы: Изучить и законспектировать основные теоретические...
41317. Изучение команд SSE и SSE2 1.24 MB
  Практически изучить команды SSE и SSE2 для МП. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При этом использовать описание работы лабораторный блок ПК иллюстрационный материал; В практической части отработать следующие подразделы: Рассмотреть примеры использования команд ХММрасширения Выполнить пример формирования кода операции и порядок следования операндов команд ХММрасширения...
41318. Изучение команд обращения к портам. Реализа-ция последовательного и параллельного обмена данными 149.5 KB
  Основные теоретические положения Организация ввода вывода в микропроцессорной системе Вводом выводом ВВ называется передача данных между ядром ЭВМ включающим в себя микропроцессор и основную память и внешними устройствами ВУ. Управляющие данные от процессора называемые также командными словами или приказами инициируют действия не связанные непосредственно с передачей данных например запуск устройства запрещение прерываний и т. Управляющие данные от внешних устройств называются словами состояния; они содержат информацию об...
41319. Изучение команд пересылки данных МК МС 68HC908GP32 1.63 MB
  Практически изучить команды пересылки данных МК МС 68HC908GP32 ПК ПО. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При запуске МК процедура RЕSЕТ в РС автоматически загружается адрес первой команды выполняемой программы вектор начального запуска из двух...
41320. Изучение команд передачи управления 4.09 MB
  Практически изучить команды передачи управления . Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды операций над числами . При этом использовать описание работы лабораторный блок ПК иллюстрационный материал; В практической части отработать следующие подразделы: Рассмотреть команды передачи управления; Выполнить примеры и отразить их в отчёте; Проанализировать результаты выполненных примеров. Основные теоретические положения Способы...