10193

Создание и совершенствование ЭВМ. Роль электроники и компьютерных технологий в современном мире

Научная статья

Информатика, кибернетика и программирование

Создание и совершенствование ЭВМ. Роль электроники и компьютерных технологий в современном мире Логическим результатом эволюции радиоэлектронных технологий стало создание ЭВМ. Назвать точную дату изобретения и автора первой электронной вычислительной машины достат

Русский

2013-03-21

47.5 KB

25 чел.

Создание и совершенствование ЭВМ. Роль электроники и компьютерных технологий в современном мире

Логическим результатом эволюции радиоэлектронных технологий стало создание ЭВМ. Назвать точную дату изобретения и автора первой электронной вычислительной машины достаточно сложно, поскольку не ясно, какое именно устройство следует считать ее прототипом. Большинство исследователей относят данное время к 30-м гг. XIX в., когда английский математик Чарльз Беббидж начал работу по созданию Аналитической машины. Она отличалась от уже существовавших автоматических вычислительных приборов наличием «склада памяти», в котором могли храниться до 100 чисел. Машина была способна в минуту осуществлять 60 сложений или производить умножение двух пятидесятизначных чисел. Интересно, что программы для ее использования составляла дочь великого поэта Байрона леди Лавлайс. На этом основании она стала считаться первым программистом в истории техники. Однако дальнейшая разработка проекта Аналитической машины была остановлена. Английское правительство не увидело в ней практической пользы, отправив ее в музей Королевского колледжа в Лондоне. К идеям Беббиджа конструкторы вернулись лишь в конце XIX в. В 1890 г. Герман Холлерит использовал созданную им электромеханическую машину для обработки результатов переписи населения США С его именем связано также образование первой в мире фирмы, специализирующейся на изготовлении нерфокарт и счетно-программных устройств. Впоследствии она получила название IВМ - ныне один из крупнейших в мире производителей ЭВМ.

Первые проекты электронных вычислительных машин стали появляться в конце 30-х гг. XX в. Так в 1937 г. сотрудник Гарвардского университета Говард Айкен приступил к созданию вычислительного устройства на электромагнитных реле. При поддержке корпорации IBM к январю 1943 г. он построил ЭВМ, состоящую из 750 тыс. частей и 72 аккумуляторов. Весила машина 5 т. при длине 15 м. Ей необходима была целая секунда на операцию сложения и в шесть раз больше - на процесс умножения чисел. Вместе с тем реализация проекта Айкена доказала возможность создания и эксплуатации подобных устройств. Первая электронно-вычислительная машина с автоматическим программным управлением была разработана сотрудником Пенсильванского университета США Максом Эккертом в 1946 г. Она осуществляла уже 5000 операций сложения в сек. Через три года появляется первая ЭВМ современного типа, построенная коллективом специалистов из Кембриджского университета под руководством Мориса Уилкса при участии Алана Тьюринга. В ее запоминающем устройстве могло храниться 512 чисел в пределах 10 млн. каждое. На операцию сложения машине требовалось всего 0,0001 сек., а умножение она производила за 0,01 сек. Разработка первой отечественной ЭВМ велась с 1947 г. в Институте электротехники Академии паук Украины под руководством С. А. Лебедева. Именно там была создана МЭС.М - малая электронная счетная машина, начало практического использования которой относится к 1951 г. Серийное производство ЭВМ было налажено в СССР и США по сути дела одновременно. Парк электронно-вычислительных машин увеличивался высокими темпами. Если в начале 50-х гг. XX в. их количество исчислялось десятками, то в 1965 г. во всем мире использовалось уже около 40 тыс. ЭВМ, а в J970 г. - свыше 100 тыс.

В конце 60-х - первой половине 70-х гг. XX в, разрабатываются и начинают использоваться персональные компьютеры. По данным сборника русских рекордов «Диво», изданного в Москве в 1991 г., первый компьютер такого рода был изобретен в Омске  Этого же мнения придерживается академик С. П. Капица. Автор гениального

изобретения - член Российской инженерной академии А. А, Горохов, В 1954 г, он закончил Омский техникум транспортного строительства, а затем - Московский политехнический институт заочно. Его трудовая биография началась на Омской железной дороге, продолжилась на радиозаводе им. Попова и завершилась в местном филиале Научно-исследовательского института технологии машиностроения. Этот НИИ тогда находился при Омском авиационном заводе, где в 1968 г. и был изобретен персональный компьютер. Правда, в проекте он назывался «программирующим прибором», на который и было выдано в 1973 г. авторское свидетельство №383005, Однако для внедрения изобретения в производство нужен был промышленный образец, но на его изготовление в Министерстве общего машиностроения не были выделены средства по причине некомпетентности и недальновидности чиновников. Так страна потеряла стратегическое изобретение, а в 1975 г. американская фирма «Опил компьютерз» начала производство персональных ЭВМ.

Дальнейшее развитие электронных технологий привело к компьютерному буму на рубеже XX-XXI столетий. К настоящему моменту в мире насчитывается около 2 млн высокопроизводительных ЭВМ, а персональные компьютеры в развитых странах становятся предметом первой необходимости. Параллельно идет процесс постоянного совершенствования электронно-вычислительных машин. В США уже разработан проект суперкомпьютера будущего, рассчитанного на 1000 трлн операций в сек. По своей эффективности он в 8 раз должен превзойти ЭВМ пятого поколения. Суперкомпьютер будет располагать информацией, равной объему примерно i трлн книг. Наряду с ЭВМ универсального применения в настоящий момент создается уникальная электронная техника специального назначения. Так представители инженерного персонала американской компании «Радиэйшн инкорпорейтед» сконструировали машину, способную печатать 30 тыс. строк в мин. Таким образом, теперь появилась возможность воспроизвести весь текст Библии (773692 слова) за 65 сек.

Современные ЭВМ дают возможность хранения, обработки, быстрого поиска и передачи информации, что означает революцию в системах накопления и освоения знаний. Наступает очень важный в жизни человечества этап «безбумажной информатики», когда информация поступает к специалистам прямо на рабочее место независимо от дальности ее базирования. Не менее важное значение приобретает внедрение средств глобальной связи в быт, что наблюдается сейчас благодаря развитию Интернета. Это явление современной цивилизации, возникшее в 90-х гг. XX в., не минуло и нашу страну. У истоков отечественного Интернета стояла группа энтузиастов из числа программистов МГУ и электронщиков Московского инженерно-физического института во главе с М. И. Давидовым. Опираясь на «Закон о кооперации», они за год до распада СССР создали компанию «ДЕМОС-Интернет». когда о личных компьютерах никто не мог даже мечтать. Однако уже к 2003 г. число пользователей Интернета в Российской Федерации достигло 11,5 млн. чел. По этому показателю она делит с Бразилией шестое место в мире. Доступ к компьютерной сети имеют уже 33% москвичей. В этом отношении им заметно уступают жители Сибирскою территориально-административного округа, опережающие в свою очередь сограждан с Урала, Дальнего Востока и юга России.

Появление в современном мире значительного количества высококлассных ЭВМ способствовало формированию технической базы кибернетики. Объектом исследования этой науки стали общие законы получения, хранения, передачи и переработки информации. К кибернетическим системам относятся не только автоматические процессы в технике, ЭВМ, но и человеческий мозг, биологические популяции, общества людей и т.д. Такой подход создал возможность использовать уже биологические процессы в промышленном производстве, технике. Появились совершенно новые отрасли знаний биотехнология и генная инженерия. XX век стал поприщем постоянного развития научно-технической революции. В ходе ее наука сначала превратилась в производительную силу общества, а затем - синтезировалась с техникой, образуя единую систему. По прогнозам ученых, в XXI в. грядет биотехнологическая революция, которая объективно должна привести к образованию системы «наука-тсхника-природа». Какими будут в этих условиях технические достижения человечества покажет будущее.


 

А также другие работы, которые могут Вас заинтересовать

13265. Измерение мощностей цепей переменного тока 2.52 MB
  Лабораторная работа №6. Измерение мощностей цепей переменного тока. Цель работы: изучение методов измерения активной реактивной полной мощности и коэффициента мощности в цепях содержащих R C и L.. Приборы: 1. Универсальный стенд; 2. Ваттметр; ...
13266. Ознакомление с устройством и принципом работы трансформатора 1.49 MB
  Лабораторная работа № 7 Исследование однофазного трансформатора. Цель: Ознакомление с устройством и принципом работы трансформатора. Получение основных характеристик трансформатора. Приборы: 1. Амперметр 2. Вольтметр ...
13267. ИССЛЕДОВАНИЕ ДИОДОВ 361.5 KB
  ЛАБОРАТОРНАЯ РАБОТА № 8 ЭТ ИССЛЕДОВАНИЕ ДИОДОВ Цель работы: Изучение полупроводниковых диодов и стабилитронов снятие их вольтамперных характеристик. Приборы: 1.Универсальный стенд.
13268. Изучение выпрямителей 307.5 KB
  Лабораторная работа №9 Изучение выпрямителей Цель работы: Изучение различных схем выпрямления переменного тока. Определение основных характеристик выпрямителей. Приборы и принадлежности: 1. Универсальный стенд. 2. Осциллограф. 3. Амперметр. 4. Вольтм
13269. Изучение различных схем сглаживающих фильтров 335 KB
  Цель работы: Изучение различных схем сглаживающих фильтров определение основных характеристик. Изучение параметрического стабилизатора на стабилитроне. Приборы:1. Универсальный стенд. Амперметр. Вольтметр. Осциллограф. 10.1Теоретическое введени...
13270. Исследование тиристора 99.5 KB
  Лабораторная работа №11 Исследование тиристора. Цель работы: ознакомление с вольтамперными характеристиками и основными параметрами переключающих диодовтиристоров. Приборы:1.Универсальный стенд. 2.Авометр. 3.Амперметр. 4.Электронный вольтметр. 11.1Теоритич
13271. Опытное определение параметров трёхфазного синхронного генератора 92.5 KB
  Лабораторная работа C1 по дисциплине Электрические машины Опытное определение параметров трёхфазного синхронного генератора Цель работы: Изучение методов экспериментального определения параметров установившихся и переходных режимов работы синхронного ген
13272. Ознакомление со свойствами синхронного двигателя, его угловыми и рабочими характеристиками 240.5 KB
  Лабораторная работа С4. Исследование трехфазного синхронного двигателя. Цель работы: ознакомление со свойствами синхронного двигателя его угловыми и рабочими характеристиками. Параметры двигателя: nн = 1000 об/мин Pн = 1 кВт Sн = 1.25 кВА cosн = 08 U1н = 127 В I1н = 35 А ...
13273. Исследование трёхфазного синхронного двигателя 240.5 KB
  Исследование трёхфазного синхронного двигателя Цель работы: ознакомление с методом пуска работой и характеристиками синхронного двигателя. Определение его устойчивого режима работы по угловой характеристике. Опыты проводим по схеме: ...