10215

Расчет стационарного или не стационарного температурного поля бака трансформатора

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет стационарного или не стационарного температурного поля бака трансформатора Краткая теория. Система индукционного нагрева представляет собой в общем случае источник питания индуктор нагреваемое тело и окружающую среду. Источник питания будь то генерат

Русский

2013-03-21

137 KB

0 чел.

Расчет стационарного или не стационарного температурного поля бака трансформатора

Краткая теория.

Система индукционного нагрева представляет собой, в общем случае, источник питания, индуктор, нагреваемое тело и окружающую среду.

  Источник питания будь то генератор повышенной частоты, тиристорный  преобразователь частоты, ламповый генератор или просто понижающий трансформатор, в ряде является довольно сложным. Рассматривать его мы не будем, т.к. отдельные стороны его функционирования излагались в курсе « Источники питания ЭТУС», и кроме того, существует теория электропривода, вполне позволяющая выяснить характер поведения источника питания  как объекта управления.

  Таким образом, будем рассматривать систему индуктор - нагреваемое тело – окружающая среда. Эта система описывается системами уравнений для электромагнитного и теплового полей.

 Прежде чем записать уравнение из этих систем сделаем ряд общепринятых для таких задач допущений (без них задача становится гораздо сложнее при незначительном выигрыше в точности).

  1.  Электромагнитное поле принимается квазистационарным. Под этим понимается отсутствие запаздывания электромагнитной волны в воздухе (но не в металле). В иной формулировке длины ЭМ – волны в воздухе много больше геометрического размера системы (например длины индуктора). Это допущение позволяет пренебречь токами смещения по сравнению с токами в проводниках.  
  2.  Расчет установившихся ЭМ - процессов можно проводить для величин, меняющихся по гармоническому закону. При этом ошибка в определении интегральных и распределенных энергетических параметров невелика. Это позволяет широко использовать символический метод для расчета ЭМ – полей в нелинейных ферромагнитных средах.
  3.  Потери на гистерезис при нагреве ферромагнитных тел много меньше, чем на вихревые токи. Поэтому можно считать зависимость μ(Н) однозначной, а саму проницаемость – действительной величиной.
  4.  Потери на гистерезис и вихревые токи в магнитопроводе не оказывают заметного влияния на ЭМ – поле вне его и их возможно учитывать отдельно при расчете теплового режима в магнитопроводе.

  Теперь запишем систему уравнений, описывающую электромагнитный процесс в поглощающих средах

rot H=J=γE;                                                                                (1)

  rot E= -= -;                                                              (2)

  div B=0;                                                                                       (3)

  div D=div( )= .                                                              (4)

  Здесь Н, В, Е и D – векторы напряженности и индукции магнитного и электрического полей; J – вектор плотности тока.

  Уравнение (1) представляет собой обобщенный закон полного тока в дифференциальной форме. Уравнение (2) есть закон электромагнитной индукции в дифференциальной форме. Оба эти уравнения выражают тот факт, что переменные электрические и магнитные поля существуют совместно и являются разными сторонами единого электромагнитного процесса. Уравнение (3) является выражением принципа непрерывности магнитного потока, означающего отсутствие источников магнитного поля, а уравнение (4) представляет собой дифференциальную форму теоремы Гауса, утверждающей, что источником электрического поля являются электрические заряды.

  Температурное поле описывается дифференциальным уравнением в частных производных, вид которого зависит от формы нагреваемого тела. Для тела прямоугольной формы уравнение примет вид

.                                       (5)

   Условия теплообмена, начальные условия записываются в виде уравнений, соответствующих граничным условиям 1, 2 и 3-го рода. Например, если принять участвующей в теплообмене только одну грань с координатами х=Х; у,z=var, то уравнения будут иметь вид

  ГУ1:      T(x,y,z)= ;                                                                     (6)

  ГУ2:     q;                                                                   (7)

  ГУ3:     .                                         (8)

  Более сложный вид ГУ, например, теплообмен излучением целесообразно привести к виду (7) или (8). Это упростит аналитическое решение.

ГУ4:     

  Совместное решение уравнений (1)-(4) и (5)-(8) является очень сложной задачей. Но, к счастью, этого и не требуется для задач в области ЭТУ. Чаще всего решение электромагнитной и тепловой задач производится отдельно, что вполне допустимо ввиду большой инерционности тепловых процессов по сравнению с электромагнитными.  Кроме того, зависимости свойств материала от температуры в большинстве своем ( кроме μ=f(τ) ) является близкими к линейным, что позволяет вводить в процессе решения усредненные параметры.

  На основании вышесказанного решение электромагнитной и тепловой задач будем рассматривать раздельно.

  Кроме рассмотренных двух задач в процессе нагрева возникает еще и задача термонапряжений, которые в отдельных случаях могут привести к разрушению нагреваемого тела.

Цель работы: Изучение нестационарного теплового распределения.

Выполнение работы.

Собираем в элкате графическую схему.

Обозначаем блоки и задаем их характеристики.

Теплопроводность Железа 62.

Теплопроводность масла  0.223

Объемное тепловыделение 290000

Решаем задачу и получаем следующее решение:

Выберем контур исследования решения и построим график изменения температуры по этому контуру.

Ответы на вопросы.

  1.  Каковы процесс в баке трансформатора при нагреве от стенки.

Тепловые процессы (передача тепла от стенки источника к маслу, от масла к снекам, распространения тепла в масле)

Процесс конвекции ( перемешивание масла за счет конвекции)

  1.  Почему бак не взрывается при нагреве.

При нагреве происходит увеличение количество масла и выделение влаги и газов от разложения масла. Излишки давление из бака удаляется при помощи специальных клапанов.

  1.  Как увеличить теплоотдачу от обмоток трансформатора во время работы.

Необходимо применять систему охлаждение НДЦ. В которой на обмотки подается поток холодного масла, так же по трубам подается поток холодного воздуха и так же масла принудительно циркулирует. Что приводит к очень хорошему удалению лишнего тепла.

  1.  Можно ли заменить масло другой жидкостью например водой.

Да масло можно заменить дистиллированной водой, оно обладает большей теплопроводностью, и очень хорошими электроизоляционными свойствами. Но проблема заключается в очистки этой воды и поддержании её в соответвсующем состоянии. Поэтому экономически выгодней использовать масло.

  1.  В какой цвет лучше покрасить трансформатор.

Цвет трансформатора обычно стандартный черный или серый. Цвет отведения тепла от трансформатора не влияет, большее значение имеет состав и её характеристики.

Из этого мы этой задачи мы видим что процесс нагрева масла очень сложный в виду малой теплопроводности, и займет он очень большой период времени.


 

А также другие работы, которые могут Вас заинтересовать

32467. Инфраструктура предприятий сервиса. Технические средства предприятий (организаций) социально-культурного сервиса и туризма 31 KB
  Тип гостиничной телефонной станции зависит от количества абонентных точек назначения гостиницы и ее расположения. Для облегчения связи с работниками управления и администрации гостиницы телефонное оборудование может быть укомплектовано телефонной системой. Устройство внутренней связи: важный фактор эффективности работы гостиницы. Телетайпфакс представляет собой систему письменной телекоммуникации обслуживающую как администрацию гостиницы так и клиентов.
32468. Задачи технического и технологического оснащения предприятий 27.5 KB
  Технология совокупность методов обработки изготовления изменения состояния свойств формы сырья материала или полуфабриката применяемых в процессе производства для получения готовой продукции наука о способах воздействия на сырье материалы и полупродукты соответствующими орудиями производства. Развитие науки и техники способствует совершенствованию средств массового производства туристских услуг материальнотехнической базы в гостиничном хозяйстве на транспорте в бюро путешествий.
32469. Модернизация технических средств предприятий СКС и Т 26 KB
  Бурное развитие туристкой индустрии в последнее десятилетие связано в 2мя факторами: развитием гражданской авиации и созданием компьютерных систем бронирования. В свою очередь увеличение числа авиалиний самолетов а так же рост объемов авиаперевозок закономерно привели к необходимости создания и использования компьютерных систем бронированияCRS которые стали основным инструментом для резервирования авиабилетов. Теперь в системах бронирования заложена информация не только о наличие мест но и общая информация о рейсах.
32470. Технология художественных изделий из керамики 498.54 KB
  Обжиг керамических изделий 3й разряд Сформировать знания о процессе обжига керамических изделий его видах и способах. Назначение и суть обжига керамических изделий. Виды и способы обжига. Объясняет назначение обжига керамических изделий виды и способы обжига правила загрузки и выгрузки изделий устройство обжиговых печей.
32471. Формование керамических изделий и его виды 103.77 KB
  Способы формования керамических изделий Исходя из содержания воды в формовочной массе различают следующие основные способы формовки: способ литья содержание воды 2534; пластический способ воды 1625 это свободная лепка формование на гончарном круге ручной оттиск в форме формование по вращающейся гипсовой форме с помощью шаблона или ролика; полусухой способ 716 влажности; сухой способ 27 влажности. Литье Этот способ широко применяется в производстве художественных керамических изделий что объясняется возможностью...
32472. Ручная роспись керамических изделий, подготовка, инструменты 32.21 KB
  Пером расписывают изделия прошедшие утельный или политой обжиг. Кистью можно наносить на изделия цветные массы ангобы глазурь. Роспись на изделиях можно производить без нанесения предварительного контура и по заранее нанесенному припорохом рисунку. На отводку поступают изделия предварительно оформленные основным декором.
32473. Декорирование изделий в сыром виде 15.92 KB
  Способы нанесения декора на керамический материал Декорирование является важным этапом в общем цикле технологического процесса по изготовлению художественных керамических изделий. Декорирование керамических изделий можно вести как живописным так и скульптурным методом. К живописному относят роспись изделий а также нанесение на них сплошных или частичных декоративных покрытий керамическими красками глазурями ангобами люстрами и эмалями.
32474. Сушка изделий, ее назначение, виды сушки 13.79 KB
  Сушка керамических изделий полуфабрикатов может быть естественной на открытом воздухе под навесами в сараях и т. К недостаткам туннельных сушилок относятся: большое количество вагонеток и необходимость их пополнения подверженность металлических изделий вагонеток коррозии неравномерность сушки изделий по поперечному сечению туннеля вверху температура теплоносителя выше чем внизу и необходимость круглосуточной загрузки и разгрузки вагонеток. Недостатки камерных сушилок: неравномерная сушка изделий изза различной температуры...
32475. Виды обжига керамических изделий 16.73 KB
  Периоды обжига: подъем температуры нагревание наиболее ответственный; выдержка при постоянной температуре; снижение температуры охлаждение. Составляющие режима обжига: скорость нагрева и охлаждения время выдержки при постоянной температуре температура обжига среда обжига окислительная в условиях свободного доступа воздуха; восстановительная в условиях прекращения доступа воздуха и избытка угарного газа; нейтральная. После сушки изделия имеют остаточную влажность около 24 и эта влага удаляется в начальный период обжига в...