10215

Расчет стационарного или не стационарного температурного поля бака трансформатора

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет стационарного или не стационарного температурного поля бака трансформатора Краткая теория. Система индукционного нагрева представляет собой в общем случае источник питания индуктор нагреваемое тело и окружающую среду. Источник питания будь то генерат

Русский

2013-03-21

137 KB

0 чел.

Расчет стационарного или не стационарного температурного поля бака трансформатора

Краткая теория.

Система индукционного нагрева представляет собой, в общем случае, источник питания, индуктор, нагреваемое тело и окружающую среду.

  Источник питания будь то генератор повышенной частоты, тиристорный  преобразователь частоты, ламповый генератор или просто понижающий трансформатор, в ряде является довольно сложным. Рассматривать его мы не будем, т.к. отдельные стороны его функционирования излагались в курсе « Источники питания ЭТУС», и кроме того, существует теория электропривода, вполне позволяющая выяснить характер поведения источника питания  как объекта управления.

  Таким образом, будем рассматривать систему индуктор - нагреваемое тело – окружающая среда. Эта система описывается системами уравнений для электромагнитного и теплового полей.

 Прежде чем записать уравнение из этих систем сделаем ряд общепринятых для таких задач допущений (без них задача становится гораздо сложнее при незначительном выигрыше в точности).

  1.  Электромагнитное поле принимается квазистационарным. Под этим понимается отсутствие запаздывания электромагнитной волны в воздухе (но не в металле). В иной формулировке длины ЭМ – волны в воздухе много больше геометрического размера системы (например длины индуктора). Это допущение позволяет пренебречь токами смещения по сравнению с токами в проводниках.  
  2.  Расчет установившихся ЭМ - процессов можно проводить для величин, меняющихся по гармоническому закону. При этом ошибка в определении интегральных и распределенных энергетических параметров невелика. Это позволяет широко использовать символический метод для расчета ЭМ – полей в нелинейных ферромагнитных средах.
  3.  Потери на гистерезис при нагреве ферромагнитных тел много меньше, чем на вихревые токи. Поэтому можно считать зависимость μ(Н) однозначной, а саму проницаемость – действительной величиной.
  4.  Потери на гистерезис и вихревые токи в магнитопроводе не оказывают заметного влияния на ЭМ – поле вне его и их возможно учитывать отдельно при расчете теплового режима в магнитопроводе.

  Теперь запишем систему уравнений, описывающую электромагнитный процесс в поглощающих средах

rot H=J=γE;                                                                                (1)

  rot E= -= -;                                                              (2)

  div B=0;                                                                                       (3)

  div D=div( )= .                                                              (4)

  Здесь Н, В, Е и D – векторы напряженности и индукции магнитного и электрического полей; J – вектор плотности тока.

  Уравнение (1) представляет собой обобщенный закон полного тока в дифференциальной форме. Уравнение (2) есть закон электромагнитной индукции в дифференциальной форме. Оба эти уравнения выражают тот факт, что переменные электрические и магнитные поля существуют совместно и являются разными сторонами единого электромагнитного процесса. Уравнение (3) является выражением принципа непрерывности магнитного потока, означающего отсутствие источников магнитного поля, а уравнение (4) представляет собой дифференциальную форму теоремы Гауса, утверждающей, что источником электрического поля являются электрические заряды.

  Температурное поле описывается дифференциальным уравнением в частных производных, вид которого зависит от формы нагреваемого тела. Для тела прямоугольной формы уравнение примет вид

.                                       (5)

   Условия теплообмена, начальные условия записываются в виде уравнений, соответствующих граничным условиям 1, 2 и 3-го рода. Например, если принять участвующей в теплообмене только одну грань с координатами х=Х; у,z=var, то уравнения будут иметь вид

  ГУ1:      T(x,y,z)= ;                                                                     (6)

  ГУ2:     q;                                                                   (7)

  ГУ3:     .                                         (8)

  Более сложный вид ГУ, например, теплообмен излучением целесообразно привести к виду (7) или (8). Это упростит аналитическое решение.

ГУ4:     

  Совместное решение уравнений (1)-(4) и (5)-(8) является очень сложной задачей. Но, к счастью, этого и не требуется для задач в области ЭТУ. Чаще всего решение электромагнитной и тепловой задач производится отдельно, что вполне допустимо ввиду большой инерционности тепловых процессов по сравнению с электромагнитными.  Кроме того, зависимости свойств материала от температуры в большинстве своем ( кроме μ=f(τ) ) является близкими к линейным, что позволяет вводить в процессе решения усредненные параметры.

  На основании вышесказанного решение электромагнитной и тепловой задач будем рассматривать раздельно.

  Кроме рассмотренных двух задач в процессе нагрева возникает еще и задача термонапряжений, которые в отдельных случаях могут привести к разрушению нагреваемого тела.

Цель работы: Изучение нестационарного теплового распределения.

Выполнение работы.

Собираем в элкате графическую схему.

Обозначаем блоки и задаем их характеристики.

Теплопроводность Железа 62.

Теплопроводность масла  0.223

Объемное тепловыделение 290000

Решаем задачу и получаем следующее решение:

Выберем контур исследования решения и построим график изменения температуры по этому контуру.

Ответы на вопросы.

  1.  Каковы процесс в баке трансформатора при нагреве от стенки.

Тепловые процессы (передача тепла от стенки источника к маслу, от масла к снекам, распространения тепла в масле)

Процесс конвекции ( перемешивание масла за счет конвекции)

  1.  Почему бак не взрывается при нагреве.

При нагреве происходит увеличение количество масла и выделение влаги и газов от разложения масла. Излишки давление из бака удаляется при помощи специальных клапанов.

  1.  Как увеличить теплоотдачу от обмоток трансформатора во время работы.

Необходимо применять систему охлаждение НДЦ. В которой на обмотки подается поток холодного масла, так же по трубам подается поток холодного воздуха и так же масла принудительно циркулирует. Что приводит к очень хорошему удалению лишнего тепла.

  1.  Можно ли заменить масло другой жидкостью например водой.

Да масло можно заменить дистиллированной водой, оно обладает большей теплопроводностью, и очень хорошими электроизоляционными свойствами. Но проблема заключается в очистки этой воды и поддержании её в соответвсующем состоянии. Поэтому экономически выгодней использовать масло.

  1.  В какой цвет лучше покрасить трансформатор.

Цвет трансформатора обычно стандартный черный или серый. Цвет отведения тепла от трансформатора не влияет, большее значение имеет состав и её характеристики.

Из этого мы этой задачи мы видим что процесс нагрева масла очень сложный в виду малой теплопроводности, и займет он очень большой период времени.


 

А также другие работы, которые могут Вас заинтересовать

31265. Методичні вказівки щодо практичних занять з навчальної дисципліни "Вступ до електромеханіки" для студентів денної форми навчання з напряму 6.050702 – «Електромеханіка» 12.37 MB
  5 Практичне заняття № 2 Розрахунок потужності приводного двигуна типових промислових механізмів. 17 Практичне заняття № 3 Розрахунок потужності приводного двигуна електромеханічної системи за тахограмою. 39 Практичне заняття № 6 Механічні характеристики й розрахунок опорів двигуна постійного струму. Розрахунок приведених моментів інерції та моментів опору електромеханічних систем Мета: опанувати методи і набути навичок розрахунків характеристик сумісної роботи двигуна й робочого механізму...
31266. ВИПРОБУВАННЯ, РЕМОНТ, ДІАГНОСТИКА ЕЛЕКТРОМЕХАНІЧНОГО ОБЛАДНАННЯ 13.6 MB
  50 Лабораторна робота № 5 Налагоджувальні роботи для двигунів постійного і змінного струму . Мегомметр пристрій який застосовується для вимірювання опору ізоляції електроустаткування проводів і кабелів постійному струму. Мегомметр складається з ґенератора постійного струму та вимірювального приладу що міститься в одному корпусі. Усі вони призначені для вимірювання напруги постійного та змінного струмів величини струму та опору постійному струму.
31267. Методичні вказівки щодо виконання лабораторних робіт з навчальної дисципліни “Елементи електроприводу та тренажери електромеханічних комплексів” 15.81 MB
  5 Лабораторна робота № 2 Дослідження датчиків струму і напруги. 12 Лабораторна робота № 3 Дослідження блоку датчиків струму і напруги. 20 Лабораторна робота № 4 Дослідження тиристорних реґуляторів постійної та змінної напруги . Під час проведення лабораторних занять студенти повинні визначати швидкість обертання за допомогою електромашинного та фотоелектричного датчиків швидкості; вимірювати струм і напругу за допомогою датчиків розраховувати якісні показники струму і напруги; працювати з системою імпульснофазового...
31268. Методичні вказівки щодо виконання лабораторних робіт з навчальної дисципліни “Елементи електропривода та тренажери електромеханічних комплексів” (частина ІІ) 8.45 MB
  Під час проведення лабораторних занять студенти повинні визначати швидкість обертання за допомогою електромашинного та фотоелектричного датчиків швидкості; вимірювати струм і напругу за допомогою датчиків розраховувати якісні показники струму і напруги; працювати з системою імпульснофазового керування тиристорами; набувати навичок керування двигунами постійного струму за допомогою тиристорних перетворювачів реверсивних та нереверсивних широтноімпульсних перетворювачів. Короткі теоретичні відомості Одним із способів реґулювання напруги...
31269. ЕЛЕМЕНТИ ЕЛЕКТРОПРИВОДА ТА ТРЕНАЖЕРИ ЕЛЕКТРОМЕХАНІЧНИХ КОМПЛЕКСІВ 329 KB
  Рекомендації щодо вивчення матеріалу Під час вивчення цього розділу студенту необхідно розглянути побудову та принцип дії систем збору та обробки даних призначених для обробки інформації в системах автоматичного електропривода. Студент ознайомиться з принципами побудови та прикладами використання датчиків АЦП та ЦАП засвоїть необхідність використання гальванічної розвязки і нормування сигналів у інформаційній частині ЕП. Рекомендації щодо вивчення матеріалу Вивчаючи дану тему студенту необхідно ознайомитись з принципом дії основних типів...
31270. ЕЛЕКТРОНІКА ТА МІКРОСХЕМОТЕХНІКА 951 KB
  050702 ЕЛЕКТРОМЕХАНІКА КРЕМЕНЧУК 2011 Методичні вказівки щодо виконання курсової роботи з навчальної дисципліни â Електроніка та мікросхемотехніка â для студентів усіх форм навчання за напрямками 6. Сергієнко ЗМІСТ Вступ 4 1 Мета та задачі курсового проектування 4 2 Тематика курсових робіт 4 3 Порядок виконання курсової роботи 4 4 Структура курсової роботи 6 5 Порядок захисту курсової роботи 7 6 Критерії оцінювання курсової роботи 7 7 Зміст курсової роботи 8 8 Вимоги що до оформлення курсової роботи 9 ДОДАТОК А. Виконання курсової...
31271. ЕЛЕМЕНТИ ЕЛЕКТРОПРИВОДА ТА ТРЕНАЖЕРИ ЕЛЕКТРОМЕХАНІЧНИХ КОМПЛЕКСІВ 8.84 MB
  Перелік практичних робіт 5 Практична робота № 1 Обробка експериментальних даних в пакеті MthCD 5 Практична робота № 2 Дослідження схем та принципу дії перетворювачів частотанапруга і напругачастота 9 Практична робота № 3 Дослідження схем включення та основних параметрів датчиків струму та напруги. Наведено приклад обробки експериментальних даних сигналів датчиків швидкості струму напруги. Обробка експериментальних даних у пакеті MthCD Мета: набуття навичок обробки експериментальних даних за допомогою математичного...
31272. Складання схеми електропостачання цеху 1.7 MB
  На вибір схеми і конструктивне виконання цехової мережі впливають такі фактори як категорія надійності живлення ПЕЕ розміщення на території цеху номінальні струми і напруги. Такі схеми виконують за допомогою комплектних шинопроводів типу ШРА на струми до 630А додатки 1 табл.8 Визначення повної розрахункової потужності і розрахункового струму : . Застосовування вимикачів навантаження які здатні відключати робочі струми трансформаторів замість силових вимикачів невеликої та середньої потужності здійснюється з метою зниження...
31273. Методичні вказівки щодо виконання лабораторних робіт з навчальної дисципліни „Моделювання електромеханічних систем” 1.02 MB
  Розрахунок перехідних характеристик на моделі та визначення параметрів передавальної функції електромеханічної системи 34 Список літератури 37 ЗАГАЛЬНІ ВІДОМОСТІ Мета дисципліни Моделювання електромеханічних систем полягає в підготовці інженерів широкого профілю здатних самостійно і творчо розвязувати задачі проектування дослідження налагодження й експлуатації сучасних автоматизованих електроприводів і систем автоматизації промислових установок і технологічних комплексів у будьяких галузях народного господарства. Внаслідок проведення...