10426

Исследование рупорно-линзовой антенны

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Экспериментально исследовать влияние ускоряющей металлопластинчатой корректирующей линзы на коэффициент усиления, полосу частот пропускания, ширину главного лепестка характеристики направленности и длину пирамидальной рупорной антенны.

Русский

2014-11-30

194 KB

7 чел.

Министерство образования Украины

НТУУ «КПИ»

Институт  телекоммуникационных систем

   Дисциплина :”Антенны и распространение радиоволн ”

         Отчет о лабораторной работе №2

 Исследование рупорно-линзовой антенны

           Выполнил: ст. гр. ТЗ-31

                                                                                        _________ __________________

                                                                                         защитил работу  «    » мая  2005г.

                                                                                         оценка______________________

______________________

                                                                                      (подпис преподавателя)

Киев 2005

  1.  Цель лабораторной работы

Экспериментально исследовать влияние ускоряющей металлопластинчатой
корректирующей линзы на коэффициент усиления, полосу частот пропускания, ширину
главного лепестка характеристики направленности и длину пирамидальной рупорной
антенны.

         2. Состав и описание лабораторной установки

                 Лабораторная установка содержит (рис. 1):

Передающая рупорная антенна (2) укреплена на АПУ-1 (6) и через КВП (7)
коаксиальным кабелем (8) соединена с выходом генератора качающейся частоты
измерителя АЧХ (1). Исследуемая рупорно-линзовая антенна (3) установлена на АПУ-2  (5) и чёрез волноводную детекторную  секцию СВЧ (4) коаксиальным кабелем (8) соединена с низкочастотным выходом  измерителя АЧХ (1).

  1.  Порядок выполнения лабораторной работы

Собрать, проверить правильность соединений, начальную установку"(ручек и включить   лабораторную установку.

  1.  Вращением   передающей   антенны   в   АПУ-1    установить   вертикальную
    поляризацию излучаемых ею электромагнитных волн (плоскость поляризации
    излучаемой     волны    параллельна     узкой     стенке    питающего     антенну

прямоугольного волновода).   

3) Обеспечить соосность рупоров передающей и исследуемой антенн.

4)  Согласовать     поляризацию     исследуемой     антенны     с     поляризацией

электромагнитной волны, излучаемой передающей антенной.

  1.  Измерить полосу частот пропускания исследуемой антенны по уровню - ЗдБ
    относительно максимума показания индикатора измерителя АЧХ.
  2.  Определить по результатам предыдущего пункта центральную частоту fц
    полосы частот пропускания исследуемой рупорно-линзовой антенны.

Установить на измерителе АЧХ частоту fц.

  1.  Измерить угол между положениями исследуемой антенны в горизонтальной
    плоскости по обе стороны от её положения определённого в позиции 3),
    которым соответствует уменьшение уровня сигнала на индикаторе измерителя
    АЧХ на ЗдБ. Этот угол есть ширина по уровню - ЗдБ т.е. по уровню половины
    мощности главного лепестка диаграммы направленности по мощности в Н-
    плоскости. (ДНА по мощности, а не по полю, потому что вольтамперная
    характеристика детектора квадратичная и  поэтому показания индикатора
    измерителя АЧХ пропорциональны мощности сигнала на входе детектора).
  2.  Повернуть исследуемую рупорно-линзовую антенну в АПУ-2 и передающую
    антенну в АПУ-1 вокруг горизонтальной оси на 90°.
  3.  Измерить по методике позиции 8) ширину главного лепестка по уровню - ЗдБ
    диаграммы направленности по мощности в Е-плоскости рупорно-линзовой
    антенны.
  4.  Снять с исследуемой рупорно-линзовой антенны корректирующую металло-
    пластическую линзу.
  5.  Измерить длину и размеры раскрыва рупорной части исследуемой рупорно-
    линзовой антенны.

13)Выполнить пункты с 2) по 10) для рупорной части.

14)Статистически    обработать    результаты    измерений исследования рупорной антенны.

15)Рассчитать длину и размеры раскрыва оптимальной пирамидальной рупорной
антенны, имеющей ширину главного лепестка по уровню - ЗдБ диаграмм
направленности по мощности в Н и Е плоскостях так же, как исследованная
рупорно-линзовая антенна.

  1.  Сравнить между собой результаты расчетов и измерений. Сделать выводы.

Расстояние, между раскрывом передающей и раскрывом  исследуемой   линзовой антенной должно быть не менее 2L2, где L -   наибольший размер раскрывов любой   из   антенн   (передающей   или   исследуемой)   лабораторной   установки,   что     обеспечивает   пригодность   результатов   измерений   для   характеристики   свойств   исследуемой антенны в дальней зоне. Aпy-1 позволяет вращать передающую антенну (2) вокруг её направления максимального излучения и тем самым изменять в пространстве  положение плоскости поляризации электромагнитной волны.

АПУ-2 позволяет вращать исследуемую антенну (3).

-    вокруг её продольной (горизонтальной)оси и тем самым изменять в пространстве  
положение плоскости поляризации
ф излучаемых ею электромагнитных волн.

вокруг  вертикальной  оси  и тем  самым   изменять  в  пространстве  направление максимального излучения.

Размеры  апертуры  приёмной  антенны:  А=15.2 см ; В=10см; R=6 см.

1 -измерение

2-измерение

3-измерение

 

С линзой

Без линзы

С линзой

Без линзы

С линзой

Без линзы

Fmin(ГГц)

10,26

10,33

10,29

Fmax(ГГц)

11,41

11,58

11,56

Fц(ГГц)

10,835

10,335

10,93

2θ (Н-плоскость)

18

51

25

56

16

54

2θ (Е-плоскость)

23

56

26

62

30

61

 Уровнь сигнала (Дб)

-16,8

-22

---------

---------

-19

-25,5

 

Согласно заданию на выполнение лабараторной работы проведен статистический анализ полученых результатов с учетом того что доверительная вероятность для заданного типа прибора равна Pдов=0.95,число измерений n=10.

 

Определим матожидания и дисперсии для заданых измерений:

Проведем по заданным характеристикам расчет оптимальной рупорной антенны (его раскрыв и размеры) так чтоб ширина главного лепестка по половине мощности равнялась ширине  главного лепестка по половине мощности исследованной рупорно-линзовой антенны.

2θтеор(0,5 Р) = 80°λ/А   (Н-плоскость)   2θтеор(0,5 Р) = 53°λ/В  (Е-плоскость)    λ=0,03м

А=0,04м В=0,026м

Измерить расстояние между пластинами линзы, рассчитать её коэффициент
замедления   и   полосу   частот   пропускания. Сравнить с полученной экспериментально.    

Экспериментальная полоса частот

Выводы: В результате выполнения данной лабораторной работы нами были получены эмпирические результаты для полосы частот пропускания рупорной и рупорно-линзовой антенн. Так же нами были получены значения для ширины главного лепестка по половине мощности. Результатом работы стал рассчет доверительного интервала по заданным измерениям и

расчет размеров рупора для которого уровень главного лепестка по половине мощности  соответствовал бы значению уровня главного лепестка по половине мощности рупорно-линзовой антенны. В результате нами были получены данные позволяющие сделать вывод что для получения сходной по ширене характеристики неободимо значительно увеличить размеры рупора.

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

28138. Правило Бугера-Вебера и “основной психофизический закон” Г.Т.Фехнера 36 KB
  Бугер пришел к выводу что величина едва заметного различия ЕЗР между двумя освещенностями непостоянна она возрастает пропорционально исходной освещенности: ΔL=kL. Другими словами отношение ЕЗР ΔL к исходному уровню освещенности есть величина постоянная; ΔL L= const. раз то и величина разностного порога ΔР = P1 Р2 повышалась в той же пропорции. Для веса в 200 граммов величина разностного порога составляла 6 граммов для 300 9 граммов и т.
28139. Понятие о психофизических шкалах. Основные методы психофизического шкалирования 530 KB
  Основные методы психофизического шкалирования. Методы психофизического шкалирования: 1. Методы воспроизведения и идентификации. Эти методы редко используются но имеют ценность для изучения кратковременной памяти так как позволяют оценить характер трансформации субъективного образа сигнала при его запечатлении и хранении.