10452

Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения

Реферат

Математика и математический анализ

Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения. На выходе изображающих систем обычно создается фотоснимок или изображение на экране которые рассматриваются человеком. Поэтому очевидно что для эффективн

Русский

2013-03-26

301 KB

13 чел.

Глаз и психофизические свойства зрения. Зрительные явления. Модель одноцветного зрения. Модель цветного зрения.

На выходе изображающих систем обычно создается фотоснимок или изображение на экране, которые рассматриваются человеком. Поэтому очевидно, что для эффективной разработки таких систем очень полезно понимать механизм человеческого зрения. Зная этот механизм, можно строить функциональные модели зрительной системы. Такие модели очень важны при разработке систем обработки изображений и создании критериев верности воспроизведения и дешифрируемости изображения.

Согласно словарю Вебстера, свет есть «лучистая энергия, которая, действуя на органы зрения, дает им возможность выполнять зрительные функции». Физические свойства света изучены довольно хорошо, но механизм взаимодействия света с органами зрения еще не вполне понятен. Как известно, свет есть форма электромагнитного излучения, лежащего в относительно узкой области спектра в диапазоне длин волн от 350 до 780 нм. Характеристикой источника света является интенсивность излучения заданной длины волны. В зрительную систему человека попадает свет либо от самосветящегося источника, либо отраженный от некоторого предмета, либо прошедший через него. Пусть Е(λ) есть спектральная плотность излучения первичного источника света, a t(λ) и r(λ) — коэффициент пропускания и коэффициент отражения соответственно. Тогда для предмета, пропускающего свет, спектральная плотность излучения наблюдаемого света будет

С(λ) = t(λ)E(λ),         (2.1.1)

а для предмета, отражающего свет,

С(λ) = r(λ)Е(λ).         (2.1.2)

На рис, 2.1 представлены графики спектральной плотности излучения некоторых обычных источников света, применяемых в изображающих системах: солнечного, вольфрамовой лампы накаливания, светоизлучающего диода, ртутной дуговой лампы и гелий-неонового лазера. Свет от этих источников воспринимается зрителями по-разному. Солнечный свет кажется очень ярким и желтовато- белым, а свет лампы накаливания - менее ярким и довольно желтым. Светоизлучающий диод дает тусклый зеленый свет, а ртутная лампа - очень яркий, голубовато-белый. Наконец, лазер создает чрезвычайно яркий световой пучок чистого красного цвета. Эти наблюдения порождают много вопросов. Например, полностью ли описывает спектральная плотность излучения особенности восприятия этого излучения? Как будет видно, получен только частичный ответ на этот вопрос.

Рисунок 2.1.

Существуют три основные характеристики ощущения света - светлота, цветовой тон и насыщенность. Эти характеристики рассматриваются ниже.

Если имеются два источника света с одинаковой формой спектральной плотности излучения, то источник с большей интенсивностью излучения воспринимается как более яркий. Известно, однако, много примеров, когда предмет с одинаковой интенсивностью излучения всех точек не воспринимается как имеющий равномерную светлоту. Следовательно, интенсивность света не является адекватной количественной мерой светлоты.

Признак, которым отличается, например, красный свет от зеленого, называется цветовым тоном. Ясно, однако, что длина волны не является адекватной мерой цвета, так как в природе встречаются такие цвета, которые не наблюдаются в радуге, создаваемой призмой. Отсутствует, например, пурпурный цвет, который может быть получен смешением в равных количествах узкополосных красного и синего света. Если два источника света с одинаковыми спектральными плотностями наблюдать в одинаковых условиях, их цветовой тон будет одинаковым. Однако можно взять два таких источника света с разными спектральными плотностями, которые будут восприниматься как имеющие одинаковый цветовой тон (такие два излучения называются метамерической парой).

Третья характеристика ощущения света - его насыщенность. Этот признак позволяет отличать спектральный цвет от пастельного блеклого цвета такого же цветового тона. По существу насыщенность описывает «белизну» цвета. Однако обычно насыщенность не используют как количественную характеристику.

Для классификации цветов удобно рассматривать их как точки некоторого цветового пространства. Но для того чтобы можно было делать количественные выводы, расстояние между двумя точками в цветовом пространстве должно соответствовать субъективно воспринимаемой разнице между представляемыми цветами, где бы ни находилась эта пара цветов. Такие цветовые пространства будут рассматриваться далее.

Наиболее естественным подходом к разработке модели зрительной системы человека было бы, видимо, проведение физиологического анализа глаза, нервных путей от глаза к мозгу и тех отделов мозга, которые связаны со зрительным восприятием. К сожалению, мы не в состоянии решить эту задачу из-за того, что зрительная система состоит из огромного числа очень маленьких элементов. Однако в результате физиологических исследований глаза уже получено много данных, полезных для создания модели зрительной системы.

Рисунок 2.2.

На рис. 2.2 показан поперечный разрез человеческого глазного яблока. Передняя прозрачная наружная оболочка глаза называется роговицей. Остальная часть наружной оболочки – склера - состоит из плотных волокон. Следующий слой - сосудистая оболочка, содержащая капилляры, которые снабжают глаз кровью. Внутри сосудистой оболочки находится сетчатка с рецепторами двух типов - палочками и колбочками. Соединенные с сетчаткой нервные волокна выходят из глазного яблока в виде пучка - зрительного нерва. Свет, попавший в глаз через роговицу, фокусируется на поверхности сетчатки хрусталиком, форма которого под действием специальной мышцы меняется для обеспечения хорошей фокусировки предметов, находящихся на различном расстоянии от глаза. Радужная оболочка действует как диафрагма, изменяя количество света, проходящее в глаз. Палочки - это длинные тонкие рецепторы, а колбочки - более короткие и толстые. Эти рецепторы действуют различным образом. Палочки более чувствительны к свету, чем колбочки. При малой освещенности палочки обеспечивают реакцию зрительной системы (ночное зрение). Колбочки функционируют при большой освещенности, их реакция представляет дневное зрение.

Рисунок 2.3. Левый график относится а палочкам, правый – к колбочкам.

На рис. 2.3 приведены относительные чувствительности палочек и колбочек в зависимости от длины волны воспринимаемого света – так называемые функции видности глаза. Глаз содержит около 6,5 млн, колбочек и 100 млн. палочек. Распределение палочек и колбочек по сетчатке показано на рис. 2.4. Наибольшая плотность колбочек приходится на небольшую область сетчатки, называемую центральной ямкой, которая находится вблизи выхода из глаза зрительного нерва. Это область наиболее резкого дневного зрения. В окрестности зрительного нерва нет ни палочек, ни колбочек — это слепое пятно глаза.

Рисунок 2.4.

Имеются три основных типа колбочек сетчатки. Эти колбочки имеют различные спектральные характеристики поглощения света с максимумом в красной, зеленой и синей областях оптического спектра. На рис. 2.5 приведены спектральные кривые поглощения пигментов сетчатки.

Рисунок 2.5.

Следует отметить две особенности этих кривых: во-первых, относительно низкую чувствительность колбочек типа α, воспринимающих в основном синий свет, и, во-вторых, значительное перекрытие кривых. Существование трех типов колбочек служит физиологической основой для трехцветной теории цветового зрения.

Когда свет возбуждает палочку или колбочку, возникает фотохимический переходный процесс, в результате которого создается нервный импульс. Механизм распространения нервных импульсов в зрительной системе в настоящее время полностью не выяснен. Известно, что зрительный нерв содержит около 800000 нервных волокон. Сетчатка имеет свыше 100000000 рецепторов. Поскольку фотохимические процессы в сетчатке и механизм распространения нервных импульсов в глазе недостаточно изучены, нельзя дать полного описания зрительных процессов. Приходится удовлетвориться разработкой моделей, которые описывают и, будем надеяться, предскажут реакцию зрительной системы человека на те или иные изображения.


 

А также другие работы, которые могут Вас заинтересовать

76887. Задний мозг 181.2 KB
  Ядра и волокна моста на поперечном срезе: Переднее и заднее ядро трапециевидного тела в середине моста. Двигательное ядро лицевого нерва в покрышке между трапециевидным телом и волокнами средней ножки мозжечка. Двигательное и чувствительное мостовое ядра тройничного нерва в покрышке между волокнами верхних и средних ножек мозжечка. Верхнее слюноотделительное парасимпатическое ядро в покрышке между ядрами отводящего и тройничного нервов; Ядро одиночного пути чувствительное в покрышке между волокнами верхних и нижних...
76888. Мозжечок 186.15 KB
  Параметры мозжечка составляют: масса в 120-150 г поперечный размер 910 см длина 35 см. От большого мозга отделен поперечной щелью в которой находится отросток твердой мозговой оболочки намет палатки мозжечка закрывающий нижние затылочные ямки в задней черепной яме. Рельеф на поверхностях мозжечка возникает благодаря глубоким поперечным щелям разделяющим верхнюю заднюю и нижнюю доли. Менее глубокие поперечные щели делят доли на дольки а по поверхности долек проходят мелкие бороздки отграничивающие листки мозжечка.
76889. Продолговатый мозг 180.62 KB
  Внутреннее строение мозга на фронтальном разрезе: ядра нижние оливные: правое и левое в оливах; ретикулярная формация лежит над оливами; сердечный и дыхательный центры функциональные объединения на основе ядер ретикулярной формации и блуждающего нерва; ядра IX X XI и XII пары черепных нервов: двигательное двойное ядро IX X черепных пар заднее ядро X пары парасимпатическое двигательные ядра XI и XII черепных пар; глотательнорвотный центр на основе функционального объединения ретикулярной формации и ядер IX X XII пары;...
76890. Ромбовидная ямка, её рельеф, проекция на нее ядер черепных нервов 183.14 KB
  В ней различают мало заметные но важные структуры: треугольник подъязычного нерва узкая часть медиального возвышения в нижнем углу с проекцией двигательного ядра этого нерва; треугольник блуждающего нерва кнаружи от треугольника подъязычного нерва в нем проекция парасимпатического заднего ядра данного нерва; мозговые полоски IV желудочка проходящие поперечно между латеральными углами ямки и содержащие отростки клеток улитковых ядер. На ромбическую поверхность ямки в направлении спереди назад проецируются все ядра черепных нервов с...
76891. Четвертый желудочек головного мозга, его стенки, пути оттока спинномозговой жидкости 182.17 KB
  В его строении различают следующие структуры: Нижняя стенка дно ромбовидная ямка образованная дорсальными поверхностями моста и продолговатого мозга и ограниченная по бокам ножками мозжечка: сверху и спереди верхними с боков средними снизу и сзади нижними. Сверху и спереди через верхний угол ромбовидной ямки в IV желудочек впадает водопровод мозга. Четвёртый желудочек через нижний угол ромбовидной ямки прикрытый задвижкой открывается в центральный канал спинного мозга.
76892. Экстероцептивные проводящие пути 178.53 KB
  Первые псевдоуниполярные нейроны находятся в спинномозговых узлах. Вторые нейроны лежат в собственном ядре заднего рога спинного мозга. Третьи нейроны лежат в дорсолатеральном ядре таламуса. Четвертые нейроны во внутренней зернистой пластинке постцентральной извилины и верхней теменной дольки.
76893. Проводящие пути проприоцептивной чувствительности мозжечкового и коркового направления 181.16 KB
  1е нейроны псевдоуниполярные находятся в спинномозговых узлах. 2е нейроны лежат в тонком и клиновидном ядрах продолговатого мозга их аксоны формируют: внутренние дугообразные волокна начало медиальной петли перекрест ее происходит на уровне нижнего угла ромбовидной ямки; передние наружные дугообразные волокна перекрещиваются и уходят в нижнюю мозжечковую ножку и кору полушарий мозжечка; задние наружные дугообразные волокна не перекрещиваются и уходят в нижнюю ножку мозжечка и кору червя. 3и нейроны расположены в коре червя...
76894. Медиальная петля, состав волокон, положение на срезах мозга 180.14 KB
  Тела первых псевдоуниполярных нейронов бульботаламического пути находятся в спинномозговых узлах а их периферические отростки в составе спинальных нервов подходят к опорнодвигательным органам в которых заканчиваются рецепторами. Центральные отростки первых нейронов вступают в синаптические контакты с телами вторых нейронов которые находятся в тонком и клиновидном ядрах продолговатого мозга. Аксоны вторых нейронов образуют в продолговатом мозге дугообразные волокна: внутренние и наружные. Аксоны вторых нейронов участвующих в образовании...
76895. Двигательные проводящие пирамидные и экстрапирамидные пути 182.52 KB
  Первые нейроны представлены большими пирамидными клетками коры мозга. Вторые нейроны находятся в ядрах мозгового ствола и передних рогах спинного мозга а их аксоны заканчиваются в органах опорнодвигательного аппарата. Первый проходит от нейронов прецентральной извилины до двигательных нейронов сосредоточенных в ядрах ствола мозга это кортикоядерный путь. Два других тракта: кортикоспинальные передний и боковой идут от прецентральной извилины до ядер передних рогов спинного мозга.