10461
Операционные системы - основные понятия
Реферат
Информатика, кибернетика и программирование
Операционные системы основные понятия. Операционная система сокр. ОС англ. operating system комплекс управляющих и обрабатывающих программ которые с одной стороны выступают как интерфейс между устройствами вычислительной системы и прикладными программами а с друг
Русский
2013-03-26
79.05 KB
202 чел.
Операционные системы - основные понятия.
Операционная система, сокр. ОС (англ. operating system) комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных ОС общего назначения.
Существуют две группы определений ОС: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который, однако, становится ясен только при более детальном рассмотрении вопроса о том, зачем вообще нужны ОС.
Есть приложения вычислительной техники, для которых ОС излишни. Например, встроенные микрокомпьютеры содержатся сегодня во многих бытовых приборах, автомобилях (иногда по десятку в каждом), сотовых телефонах и т. п. Зачастую такой компьютер постоянно исполняет лишь одну программу, запускающуюся по включении. И простые игровые приставки также представляющие собой специализированные микрокомпьютеры могут обходиться без ОС, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске. Тем не менее, некоторые микрокомпьютеры и игровые приставки всё же работают под управлением особых собственных ОС. В большинстве случаев это UNIX-подобные системы (последнее особенно верно в отношении программируемого коммутационного оборудования: межсетевых экранов, маршрутизаторов).
ОС нужны, если:
Таким образом, современные универсальные ОС можно охарактеризовать, прежде всего, как:
Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой ОС. В составе ОС различают три группы компонентов:
Основные функции операционных систем:
Дополнительные функции:
Большинство программ, как системных (входящих в ОС), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что ОС (точнее, её ядро) управляет оборудованием.
В определении состава ОС значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав ОС включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).
Компоненты операционной системы:
Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.
Ниже приведена классификация ОС по нескольким наиболее основным признакам.
1.1 Особенности алгоритмов управления ресурсами
От эффективности алгоритмов управления локальными ресурсами компьютера во многом зависит эффективность всей сетевой ОС в целом. Поэтому, характеризуя сетевую ОС, часто приводят важнейшие особенности реализации функций ОС по управлению процессорами, памятью, внешними устройствами автономного компьютера. Так, например, в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.
Поддержка многозадачности. По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:
Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.
Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.
Поддержка многопользовательского режима. По числу одновременно работающих пользователей ОС делятся на:
Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.
Вытесняющая и невытесняющая многозадачность. Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:
Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.
Поддержка многонитевости. Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).
Многопроцессорная обработка. Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.
В наши дни становится общепринятым введение в ОС функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft (и далее) и NetWare 4.1 фирмы Novell.
Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.
Выше были рассмотрены характеристики ОС, связанные с управлением только одним типом ресурсов - процессором. Важное влияние на облик операционной системы в целом, на возможности ее использования в той или иной области оказывают особенности и других подсистем управления локальными ресурсами - подсистем управления памятью, файлами, устройствами ввода-вывода.
Специфика ОС проявляется и в том, каким образом она реализует сетевые функции: распознавание и перенаправление в сеть запросов к удаленным ресурсам, передача сообщений по сети, выполнение удаленных запросов. При реализации сетевых функций возникает комплекс задач, связанных с распределенным характером хранения и обработки данных в сети: ведение справочной информации о всех доступных в сети ресурсах и серверах, адресация взаимодействующих процессов, обеспечение прозрачности доступа, тиражирование данных, согласование копий, поддержка безопасности данных.
1.2 Особенности аппаратных платформ
На свойства операционной системы непосредственное влияние оказывают аппаратные средства, на которые она ориентирована. По типу аппаратуры различают операционные системы персональных компьютеров, мини-компьютеров, мейнфреймов, кластеров и сетей ЭВМ. Среди перечисленных типов компьютеров могут встречаться как однопроцессорные варианты, так и многопроцессорные. В любом случае специфика аппаратных средств, как правило, отражается на специфике операционных систем.
Очевидно, что ОС большой машины является более сложной и функциональной, чем ОС персонального компьютера. Так в ОС больших машин функции по планированию потока выполняемых задач, очевидно, реализуются путем использования сложных приоритетных дисциплин и требуют большей вычислительной мощности, чем в ОС персональных компьютеров. Аналогично обстоит дело и с другими функциями.
Сетевая ОС имеет в своем составе средства передачи сообщений между компьютерами по линиям связи, которые совершенно не нужны в автономной ОС. На основе этих сообщений сетевая ОС поддерживает разделение ресурсов компьютера между удаленными пользователями, подключенными к сети. Для поддержания функций передачи сообщений сетевые ОС содержат специальные программные компоненты, реализующие популярные коммуникационные протоколы, такие как IP, IPX, Ethernet и другие.
Многопроцессорные системы требуют от операционной системы особой организации, с помощью которой сама операционная система, а также поддерживаемые ею приложения могли бы выполняться параллельно отдельными процессорами системы. Параллельная работа отдельных частей ОС создает дополнительные проблемы для разработчиков ОС, так как в этом случае гораздо сложнее обеспечить согласованный доступ отдельных процессов к общим системным таблицам, исключить эффект гонок и прочие нежелательные последствия асинхронного выполнения работ.
Другие требования предъявляются к операционным системам кластеров. Кластер - слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений, и представляющихся пользователю единой системой. Наряду со специальной аппаратурой для функционирования кластерных систем необходима и программная поддержка со стороны операционной системы, которая сводится в основном к синхронизации доступа к разделяемым ресурсам, обнаружению отказов и динамической реконфигурации системы. Одной из первых разработок в области кластерных технологий были решения компании Digital Equipment на базе компьютеров VAX. Данной компанией заключено соглашение с корпорацией Microsoft о разработке кластерной технологии, использующей Windows NT. Несколько компаний предлагают кластеры на основе UNIX-машин.
Наряду с ОС, ориентированными на совершенно определенный тип аппаратной платформы, существуют операционные системы, специально разработанные таким образом, чтобы они могли быть легко перенесены с компьютера одного типа на компьютер другого типа, так называемые мобильные ОС. Наиболее ярким примером такой ОС является популярная система UNIX. В этих системах аппаратно-зависимые места тщательно локализованы, так что при переносе системы на новую платформу переписываются только они. Средством, облегчающем перенос остальной части ОС, является написание ее на машинно-независимом языке, например, на С, который и был разработан для программирования операционных систем.
1.3 Особенности областей использования
Многозадачные ОС подразделяются на три типа в соответствии с использованными при их разработке критериями эффективности:
Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для достижения этой цели в системах пакетной обработки используются следующая схема функционирования: в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам; из этого пакета заданий формируется мультипрограммная смесь, то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие отличающиеся требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины; так, например, в мультипрограммной смеси желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом. Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе, то есть выбирается "выгодное" задание. Следовательно, в таких ОС невозможно гарантировать выполнение того или иного задания в течение определенного периода времени. В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит только в случае, если активная задача сама отказывается от процессора, например, из-за необходимости выполнить операцию ввода-вывода. Поэтому одна задача может надолго занять процессор, что делает невозможным выполнение интерактивных задач. Таким образом, взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.
Системы разделения времени призваны исправить основной недостаток систем пакетной обработки - изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину. Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая "выгодна" системе, и, кроме того, имеются накладные расходы вычислительной мощности на более частое переключение процессора с задачи на задачу. Критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя.
Системы реального времени применяются для управления различными техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка или технологическими процессами, такими, как гальваническая линия, доменный процесс и т.п. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом, в противном случае может произойти авария: спутник выйдет из зоны видимости, экспериментальные данные, поступающие с датчиков, будут потеряны, толщина гальванического покрытия не будет соответствовать норме. Таким образом, критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы - реактивностью. Для этих систем мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется исходя из текущего состояния объекта или в соответствии с расписанием плановых работ.
Некоторые операционные системы могут совмещать в себе свойства систем разных типов, например, часть задач может выполняться в режиме пакетной обработки, а часть - в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.
1. 4 Особенности методов построения
При описании операционной системы часто указываются особенности ее структурной организации и основные концепции, положенные в ее основу.
К таким базовым концепциям относятся:
Ядро центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являются процессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра.
Как основополагающий элемент ОС, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.
Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.
Объекты ядра ОС:
Предшественником ОС следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).
В 19501960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.
Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём ОС может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.
Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.
Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.
Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) в пакетном режиме.
Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой ОС прикладной программой.
Реализация разделения полномочий в ОС была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенном при запуске программы на исполнение).
Применение универсальных компьютеров для управления производственными процессами потребовало реализации «реального масштаба времени» («реального времени») синхронизации исполнения программ с внешними физическими процессами.
Включение функции реального масштаба времени в ОС позволило создавать системы, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени).
Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках).
Файловая система способ хранения данных на внешних запоминающих устройствах.
К концу 1960-х годов отраслью и научно-образовательным сообществом был создан целый ряд ОС, реализующих все или часть очерченных выше функций. К ним относятся Atlas (Манчестерский университет), CTTS и ITSS (Массачусетский технологический институт, MIT), THE (Эйндховенский технологический университет), RS4000 (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).
Наиболее развитые ОС, такие как OS/360 (IBM), SCOPE (CDC (англ.)) и завершённый уже в 1970-х годах MULTICS (MIT и Bell Labs), предусматривали возможность исполнения на многопроцессорных компьютерах.
Эклектичный характер разработки ОС привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. ОС были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и полностью несовместимыми между собой, их разработка и совершенствование затягивались.
Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ритчи и Брайана Кернигана), ОС UNIX (первоначально UNICS, что обыгрывало название MULTICS) вобрала в себя многие черты более ранних ОС, но обладала целым рядом свойств, отличающих её от большинства предшественниц:
UNIX, благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), была тепло принята сначала в университетах, а затем и в отрасли, получившей прототип единой ОС, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.
В конце 1970-х годов сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD (Berkeley Software Distribution).
Задачу разработать независимую (от авторских прав Bell Labs) реализацию той же архитектуры поставил и Ричард Столлман, основатель проекта GNU.
Благодаря конкурентности реализаций архитектура ОС UNIX стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического ISO/IEC 9945[1].
Только ОС, отвечающие спецификации Single UNIX Specification, имеют право носить имя UNIX. К таким системам относятся AIX, HP-UX, IRIX, Mac OS X, SCO OpenServer, Solaris, Tru64 и z/OS.
ОС, следующие стандарту POSIX или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «UNIX-подобные» или «семейство UNIX», но оно противоречит статусу торгового знака «UNIX», принадлежащего консорциуму The Open Group и зарезервированному для обозначения ОС, строго следующих стандарту). Сертификация на совместимость со стандартом стоит некоторых денег, из-за чего некоторые системы не проходили этот процесс, однако считаются POSIX-совместимыми просто потому, что это так.
К UNIX-подобным ОС относятся системы, основанные на последней версии UNIX, выпущенной Bell Labs (System V), на разработках университета Беркли (FreeBSD, OpenBSD, NetBSD), на основе Solaris (OpenSolaris, BeleniX, Nexenta), а также ОС GNU/Linux, разработанная в части утилит и библиотек проектом GNU и в части ядра сообществом, возглавляемым Линусом Торвальдсом.
Стандартизация ОС гарантирует возможность безболезненной замены самой ОС и/или оборудования при развитии вычислительной системы или сети и дешёвого переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.
Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 1990-х годах.
Коллектив, создавший ОС UNIX, развил концепцию унификации объектов ОС, включив в исходную концепцию UNIX «устройство это тоже файл» также и процессы, и любые другие системные, сетевые и прикладные сервисы, создав новую концепцию: «что угодно это файл». Эта концепция стала одним из основных принципов ОС Plan9 (название было позаимствовано из фантастического триллера «План 9 из открытого космоса» Эдварда Вуда-младшего), призванной преодолеть принципиальные недостатки дизайна UNIX и сменившей «рабочую лошадку» UNIX System V на компьютерах сети Bell Labs в 1992 году.
Кроме реализации всех объектов ОС в виде файлов и размещения их на едином и персональном для каждого терминала вычислительной сети пространстве (namespace), были пересмотрены другие архитектурные решения UNIX. Например, в Plan9 отсутствует понятие «суперпользователь», и, соответственно, исключаются любые нарушения режима безопасности, связанные с нелегальным получением прав суперпользователя в системе. Для представления (хранения, обмена) информации Роб Пайк и Кен Томпсон разработали универсальную кодировку UTF-8, на сегодняшний день ставшую стандартом де-факто. Для доступа к файлам используется единый универсальный протокол 9P, по сети работающий поверх сетевого протокола (TCP или UDP). Таким образом, для прикладного ПО сети не существует доступ к локальным и к удалённым файлам единообразен. 9P байт-ориентированный протокол, в отличие от других подобных протоколов, являющихся блок-ориентированными. Это также результат работы концепции: доступ побайтно к унифицированным файлам, а не поблочно к разнообразным и сильно изменяющимися с развитием технологий устройствам. Для контроля доступа к объектам не требуется иных решений, кроме уже существующего в ОС контроля доступа к файлам. Новая концепция системы хранения избавила администратора системы от изнурительного труда по сопровождению архивов и предвосхитила современные системы управления версиями файлов.
ОС, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы GNU/Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.
Новые концепции были использованы Робом Пайком в «Inferno».
На основе «Plan9» в Испании разрабатываются ОС Off++ и Plan B, носящие экспериментальный характер.
К попыткам создать пост-UNIX-архитектуру можно также отнести разработку системы программирования и операционной среды Оберон в Швейцарском федеральном технологическом институте (ETH Zurich) под руководством профессора Никлауса Вирта.
6. Существующие операционные системы
Операционные системы могут быть классифицированы по базовой технологии (UNIX-подобные, пост-UNIX/потомки UΝΙΧ), типу лицензии (проприетарная или открытая), развивается ли в настоящее время (устаревшие или современные), по назначению (универсальные, ОС встроенных систем, ОС PDA, ОС реального времени, для рабочих станций или для серверов), а также по множеству других признаков.
Операционные системы, работавшие на БК-0010, БК-0010-01, БК-0011 и БК-0011М
Windows Mobile на базе Windows CE
EPOC32 Release 5 в Psion netBook 1999 года;
Microsoft Windows CE в Psion Teklogix netBook Pro 2003 года, в Elonex Smartbook и др.
А также другие работы, которые могут Вас заинтересовать | |||
4729. | Социальная структура и социальная стратификация общества | 135 KB | |
Социальная структура и социальная стратификация общества. Понятие социальной структуры и социальной стратификации общества. Причины социальной стратификации. Методологические подходы к анализу социальной стратификации (марксистское учени... | |||
4730. | Соотношения между допусками размеров, формы и расположения поверхностей | 155 KB | |
Соотношения между допусками размеров, формы и расположения поверхностей Допуски размеров фактически полностью определяют точность формы и расположения поверхностей. Поскольку разнотолщинности призматической детали ограничена размерами... | |||
4731. | Проблемы отклонения социального поведения личности в условиях российского общества | 94.5 KB | |
Введение Девиантное поведение, понимаемое как нарушение социальных норм, приобрело в последние годы массовый характер и поставило эту проблему в центр внимания социологов, социальных психологов, медиков, работников правоохранительных органов. Опреде... | |||
4732. | Расчет стержневой конструкции на сложное сопротивление | 135 KB | |
Пояснительная записка представляет собой отчет о выполнении курсовой работы. Дано подробное решение стержневой конструкции на сложное сопротивление. Приведена исходная схема конструкции, построены эпюры поперечных и нормальных сил, а также... | |||
4733. | Соціологія, як наука. Її місце в системі наук | 910.96 KB | |
Предмет соціології та її місце в системі суспільної науки. Структура та функції соціології. Мета вивчення соціології. Societas – суспільство. Logos – наука... | |||
4734. | Современные проблемы отечественной энергетики | 49.5 KB | |
Введение В данном реферате отображены некоторые проблемы, стоящие перед энергетическим сектором страны, и возможные пути их решения. В работе рассмотрены вопросы выработки ресурса энергетического оборудования, эксплуатирующегося в РАО ЕЭС России... | |||
4735. | Стены из облегченной кладки | 110 KB | |
Стены из облегченной кладки Выполнение наружных стен зданий из облегченной кладки с утеплителями, позволяет существенно уменьшить расход кирпича и цемента, а также повысить сопротивление стен теплопередаче, что уменьшает расход топлива. Рекомендуетс... | |||
4736. | Системы автоматической посадки самолетов для XXI века | 60 KB | |
Системы автоматической посадки самолетов для XXI века Катастрофа в августе 1997 года. самолета Boeing-747, выполнявшего заход на посадку по неточной системе посадки (non-precision) ночью в сложных метеоусловиях на ВПП 06L международного аэропорта... | |||
4737. | Основы технологии производства установок ЛА | 8.68 MB | |
Основы технологии производства установок ЛА. Основные понятия и определения. Процесс изготовления изделия проходит много этапов, начиная с добычи руды (продукт природы) и превращения её на металлургических предприятиях в металл или по... | |||