10595

Предмет и цель математического моделирования

Доклад

Математика и математический анализ

Предмет и цель математического моделирования. В развитии различных областей человеческой деятельности математика оказывала и оказывает существенное влияние. Ее роль складывалась исторически и зависела от двух факторов: степени развития математических понятий и ма

Русский

2013-03-29

19.24 KB

32 чел.

Предмет и цель математического моделирования.

В развитии различных областей человеческой деятельности математика оказывала и оказывает существенное влияние. Ее роль складывалась исторически и зависела от двух факторов: степени развития математических понятий и математического аппарата, а также степени зрелости знания об изучаемом объекте.

Математические понятия в процессе своего возникновения как бы впитывают в себя существенные свойства предметов и явлений и их отношений в виде существующих математических законов и структур. В результате свойства чувственно-конкретных предметов и явлений концентрированно отражаются в конкретных математических понятиях и структурах.

Дальнейшее развитие математических понятий и теорий происходит на базе уже существующих математических объектов. Этот процесс характеризуется многократным абстрагированием, идеализацией и обобщением. Математические объекты и теории не только обретают чувственно абстрактность, но и универсальную всеобщность и широкую применимость. В процессе применения математики осуществляется восхождение от абстрактного к конкретному.

Структуры “мира математического” успешно применяются для анализа “мира экспериментального”, ибо первый является идеально-абстрактной, обобщенной и логически более совершенной картиной второго. Возникновение новых математических структур и нового математического аппарата (например, аппарата математической физики, в связи с необходимостью глубокого изучения различных физических, гидродинамических, механических и других процессов и явлений) сопровождается проникновением нашего сознания в более глубокие структурные уровни, материи. Это и дало Г. Вейлю основание заметить, что “развитие математики до известной степени дублируется в физике переходом от классической к квантовой механике”.

Современное развитие науки характеризуется потребностью сложного изучения всевозможных сложных процессов и явлений – физических, химических, биологических, экономических, социальных и других. Происходит значительное увеличение темпов математизации и расширение ее области действия. Теории математики широко применяются в других науках, казалось бы совершенно от нее далеких – лингвистике, юриспруденции. Это вызвано естественным процессом развития научного знания, который потребовал привлечения нового и более совершенного математического аппарата, проявлением новых разделов математики, а также кибернетики, вычислительной техники и так далее, что значительно увеличило возможности ее применения.

Более точное математическое описание процессов и явлений, вызванное потребностями современной науки, приводит к появлению сложных систем интегральных, дифференциальных, интегральных, трансцендентных уравнений и неравенств, которые не удается решить аналитическими методами в явном виде. Для решения таких задач приходится прибегать к вычислительным алгоритмам, использовать какие-либо бесконечные процессы, сходящиеся к конечному результату. Приближенное решение задачи получается при выполнении определенного числа шагов.

Развитие ЭВМ стимулировало более интенсивное развитие вычислительных методов, создало предпосылки решения сложных задач науки, техники, экономики. Широкое применение при решении таких задач получили методы прикладной математики и математического моделирования.

В настоящее время прикладная математика и ЭВМ являются одним из определяющих факторов научно-технического прогресса. Они способствуют ускорению развития ведущих отраслей народного хозяйства, открывают принципиально новые возможности моделирования и проектирования сложных систем с выбором оптимальных параметров технологических процессов.

ЭВМ обеспечивает интенсивный процесс математизации не только естественных и технических, но также общественных и гуманитарных наук. Математическое моделирование и ЭВМ получают широкое применение в химии, биологии, медицине, психологии, лингвистике и этот список можно продолжать и продолжать.

В реферате предпринята попытка рассмотреть философские аспекты математического моделирования как метода познания окружающего мира. В первой части исследованы общие вопросы математического моделирования. Определяются и обосновываются понятия моделирование, вычислительный эксперимент, математическая модель и математическое моделирование, приводится классификация математических моделей. Во второй и третьей частях рассматривается применение математического моделирования в различных отраслях человеческого знания и деятельности. Вторая часть посвящена вопросам кибернетики, моделирования мысленной деятельности человека. Поднимаются вопросы искусственного интеллекта, модели искусственного нейрона, нейросетевых технологий. Третья часть затрагивает вопросы математического моделирования применительно к к исследованиям экономических систем, в частности вопросы имитационного моделирования.

  Электромагнитные, тепловые процессы и переходные процессы в системах управления являются весьма сложными для электротехнологических систем.

 Достижение требуемых критериев качества регулирования процесса может основываться на точном знании параметров объекта, а также на придании системе управления необходимых свойств, что в свою очередь зависит от решения первой задачи.

  Исследование объекта возможно разными способами:

  1. математическое моделирование с помощью аналитических и численных моделей;
  2. моделирование: электрические, электронные, гидравлические и т.п. модели;
  3. физическое моделирование - на подобных объектах;

-     эксперимент на реальном объекте с использованием метода планирования эксперимента.  

 Выбор того или иного метода обуславливается наличием соответствующей материальной базы, будь то компьютеры или лаборатория, а также временим и конечно финансами.

  У каждого из методов есть свои преимущества и недостатки, но все же в век компьютерной грамотности предпочтения отдаются математическому моделированию. Разработка математической модели дело дорогостоящее и довольно длительное, но зато потом полученная программа  позволяет решать целый класс задач без существенных издержек времени и средств, тогда как все другие способы требуют постоянного привлечения значительных сил и средств.

  Конечно, создание хорошей модели возможно специалистом в области математики, программирования и специальной дисциплины или тремя людьми из этих областей. Поэтому не всякому предприятию под силу держать солидный штат высококвалифицированных специалистов, не занимающихся непосредственно производством. Соответственно и возникающие проблемы каждое предприятие решает исходя из уровня своих специалистов


 

А также другие работы, которые могут Вас заинтересовать

36509. УПРАВЛЕНИЕ КАЧЕСТВОМ НА ПРОИЗВОДСТВЕ 211 KB
  В промышленно развитых странах во многих фирмах и компаниях функционируют системы качества, успешно обеспечивающие высокое качество и конкурентоспособность выпускаемой продукции. В большей части эти системы аналогичны отечественным комплексным системам управления качеством продукции
36510. Теплопровідність газів 248.36 KB
  Вони нагріті до різних температур і ці температури підтримуються сталими. Зміна температури вздовж осі характеризується градієнтом температури. Закон дає звязок між кількістю тепла і градієнтом температури. Кількість тепла пропорційна градієнту температури; як можна було б очікувати пропорційна площі площадки .
36511. Загальне рівняння для явищ переносу 184.28 KB
  Запишемо кількість молекул які налітають за одиницю часу на площадку із швидкостями у інтервалі і у межах полярних кутів . Тому записуючи кількість молекул ми додаємо ще два імовірнісні множники . Позначимо кількість величини що переноситься зліва направо через площадку тими молекулами які летять у межах кутів з відстані . Ця кількість буде визначатись добутком значення величини що переносить кожна молекула на кількість молекул : .
36512. Ергодична гіпотеза 175.19 KB
  3 Фазові перетворення ІІ роду. Поглянемо на класифікацію фазових перетворень І і ІІ роду не з точки зору наявності чи відсутності теплообміну а з точки зору стрибкоподібної зміни параметрів стану речовини. Фазові перетворення при яких перші похідні функції змінюються стрибкоподібно називаються фазовими перетвореннями І роду. Фазові перетворення при яких перші похідні функції залишаються неперервними а другі похідні тієї ж функції змінюються стрибкоподібно називаються фазовими перетвореннями ІІ роду.
36513. Закон зростання ентропії. Обчислення зміни ентропії при різних процесах 162.99 KB
  Обчислення зміни ентропії при різних процесах Якщо термодинамічна система адіабатно ізольована то і зміна ентропії у результаті протікання оборотних процесів а під час необоротних процесів які власне тільки і існують у природі як показує досвід і теорія ентропія зростає. Рівність має місце лише для оборотних процесів за означенням ентропії. Властивість зростати притаманна ентропії так само як енергії зберігатись.
36514. Об’єднана формула Максвелла-Больцмана розподілу молекул за швидкостями 177.18 KB
  Потенціальна енергія молекули залежить від її положення . Зміна потенціальної енергії спричиняє зміну і кінетичної енергії молекул оскільки . Але середня кінетична енергія не змінюється а отже не змінюється і температура газу оскільки вона є мірою кінетичної енергії молекул газу.
36515. Броунівський рух. Теорія Ейнштейна-Смолуховського. Дослід Перена по визначенню числа Авогадро 244.82 KB
  Запишемо рівняння руху такої частинки де нескомпенсована результуюча сила дії з боку молекул середовища яка примушує броунівську частинку рухатись у певному напрямку; сила тертя зумовлена вязкістю середовища. У проекції на вісь рівняння руху броунівської частинки набуває вигляду . Розвязок рівняння її руху може нам дати координату руху але хаотичний рух вимагає усереднення за довгий проміжок часу. Давайте використаємо дві очевидні тотожності : і підставимо їх у...
36516. Теплове ковзання. Радіометричний ефект. Радіометричний манометр 207.96 KB
  Капиллярногравитационными волнами называются волны распространяющиеся по поверхности жидкости под действием сил поверхностного натяжения и силы тяжести. рассмотрим случай когда глубина жидкости значительно больше длины волны. Это можно сделать очень просто если воспользоваться следующим результатом вытекающим из уравнений гидродинамики несжимаемой жидкости. В плоской бегущей синусоидальной волне малой амплитуды каждая частица жидкости движется по окружности расположенной в вертикальной плоскости проходящей через направление...
36517. Самодифузія. Коефіцієнт самодифузії, його залежність від тиску і температури 284.09 KB
  Цикл Карно і його к. Теореми Карно. У циклі Карно задача якомога спрощена. Цикл Карно виглядає наступним чином.