10596

Математическое моделирование системы индукционного нагрева

Доклад

Математика и математический анализ

Математическое моделирование системы индукционного нагрева. Система индукционного нагрева представляет собой в общем случае источник питания индуктор нагреваемое тело и окружающую среду. Источник питания будь то генератор повышенной частоты тиристорный п...

Русский

2013-03-29

32.53 KB

30 чел.

Математическое моделирование системы индукционного нагрева.

  Система индукционного нагрева представляет собой, в общем случае, источник питания, индуктор, нагреваемое тело и окружающую среду.

  Источник питания будь то генератор повышенной частоты, тиристорный  преобразователь частоты, ламповый генератор или просто понижающий трансформатор, в ряде является довольно сложным. Рассматривать его мы не будем, т.к. отдельные стороны его функционирования излагались в курсе « Источники питания ЭТУС», и кроме того, существует теория электропривода, вполне позволяющая выяснить характер поведения источника питания  как объекта управления.

  Таким образом, будем рассматривать систему индуктор - нагреваемое тело – окружающая среда. Эта система описывается системами уравнений для электромагнитного и теплового полей.

 Прежде чем записать уравнение из этих систем сделаем ряд общепринятых для таких задач допущений (без них задача становится гораздо сложнее при незначительном выигрыше в точности).

  1. Электромагнитное поле принимается квазистационарным. Под этим понимается отсутствие запаздывания электромагнитной волны в воздухе (но не в металле). В иной формулировке длины ЭМ – волны в воздухе много больше геометрического размера системы (например длины индуктора). Это допущение позволяет пренебречь токами смещения по сравнению с токами в проводниках.  
  2. Расчет установившихся ЭМ - процессов можно проводить для величин, меняющихся по гармоническому закону. При этом ошибка в определении интегральных и распределенных энергетических параметров невелика. Это позволяет широко использовать символический метод для расчета ЭМ – полей в нелинейных ферромагнитных средах.
  3. Потери на гистерезис при нагреве ферромагнитных тел много меньше, чем на вихревые токи. Поэтому можно считать зависимость μ(Н) однозначной, а саму проницаемость – действительной величиной.
  4. Потери на гистерезис и вихревые токи в магнитопроводе не оказывают заметного влияния на ЭМ – поле вне его и их возможно учитывать отдельно при расчете теплового режима в магнитопроводе.

  Теперь запишем систему уравнений, описывающую электромагнитный процесс в поглощающих средах

rot H=J=γE;                                                                                (1)

  rot E= -= -;                                                              (2)

  div B=0;                                                                                       (3)

  div D=div()=.                                                              (4)

  Здесь Н, В, Е и D – векторы напряженности и индукции магнитного и электрического полей; J – вектор плотности тока.

  Уравнение (1) представляет собой обобщенный закон полного тока в дифференциальной форме. Уравнение (2) есть закон электромагнитной индукции в дифференциальной форме. Оба эти уравнения выражают тот факт, что переменные электрические и магнитные поля существуют совместно и являются разными сторонами единого электромагнитного процесса. Уравнение (3) является выражением принципа непрерывности магнитного потока, означающего отсутствие источников магнитного поля, а уравнение (4) представляет собой дифференциальную форму теоремы Гауса, утверждающей, что источником электрического поля являются электрические заряды.

  Температурное поле описывается дифференциальным уравнением в частных производных, вид которого зависит от формы нагреваемого тела. Для тела прямоугольной формы уравнение примет вид

.                                       (5)

   Условия теплообмена, начальные условия записываются в виде уравнений, соответствующих граничным условиям 1, 2 и 3-го рода. Например, если принять участвующей в теплообмене только одну грань с координатами х=Х; у,z=var, то уравнения будут иметь вид

  ГУ1:      T(x,y,z)=;                                                                     (6)

  ГУ2:     q;                                                                   (7)

  ГУ3:     .                                         (8)

  Более сложный вид ГУ, например, теплообмен излучением целесообразно привести к виду (7) или (8). Это упростит аналитическое решение.

ГУ4:     

  Совместное решение уравнений (1)-(4) и (5)-(8) является очень сложной задачей. Но, к счастью, этого и не требуется для задач в области ЭТУ. Чаще всего решение электромагнитной и тепловой задач производится отдельно, что вполне допустимо ввиду большой инерционности тепловых процессов по сравнению с электромагнитными.  Кроме того, зависимости свойств материала от температуры в большинстве своем ( кроме μ=f(τ) ) является близкими к линейным, что позволяет вводить в процессе решения усредненные параметры.

  На основании вышесказанного решение электромагнитной и тепловой задач будем рассматривать раздельно.

  Кроме рассмотренных двух задач в процессе нагрева возникает еще и задача термонапряжений, которые в отдельных случаях могут привести к разрушению нагреваемого тела. Эту задачу мы рассмотрим в численных методах.


 

А также другие работы, которые могут Вас заинтересовать

50595. ИССЛЕДОВАНИЕ ЭРГОНОМИЧЕСКИХ СВОЙСТВ ИНТЕРФЕЙСА ПРИЛОЖЕНИЯ 144 KB
  Чаще всего термин применяется по отношению к компьютерным программам, однако под ним может подразумеваться любая система взаимодействия с устройствами, способными к интерактивному общению с пользователем. Несколько широко распространённых примеров...
50596. КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ 344 KB
  Цель работы: исследование влияния продольной и поперечной компенсации реактивной мощности на параметры электрической сети. Принципиальная электрическая схема лабораторного стенда Рис. 1 Результаты экспериментальных исследований (без компенсации и с поперечной компенсацией)
50598. АНАЛИЗ РЕЖИМОВ КОЛЬЦЕВЫХ СЕТЕЙ 57.5 KB
  Проделав лабораторную работу, мы исследовали режимы работы кольцевых сетей. Выяснили, что при одинаковых напряжения питающих пунктов, вследствие естественного перераспределения мощностей в замкнутой однородной сети, потери мощности получаются минимальными.
50599. АНАЛИЗ РЕЖИМОВ РАЗОМКНУТЫХ СЕТЕЙ 52.5 KB
  Проделав лабораторную работу, мы исследовали режимы работы разомкнутых сетей. Анализируя графики можно сделать вывод, что ток в линии прямо пропорционален мощности, поэтому увеличение мощности потребителя ведёт к увеличению тока, в связи с этим увеличиваются потери в линии и возникает просадка (снижение) уровня напряжения, что так же хорошо видно на графиках.
50600. Импульсные стабилизаторы напряжения 143 KB
  Цель работы Изучить назначение принцип действия свойства и возможные схемотехнические решения импульсных стабилизаторов напряжения. Задание Ознакомиться с принципами построения характеристиками и свойствами импульсных стабилизаторов напряжения. Исследовать свойства импульсных стабилизаторов напряжения построенного на биполярных транзисторах.
50601. Схемотехнические решения устройств на операционных усилителях 586 KB
  Принципиальная схема простого аналогового интегратора показана на рис. На этой схеме конденсатор в цепи обратной связи ОУ подсоединен между суммирующим входом и выходом интегратора. Для определения выходного напряжения интегратора при постоянном напряжении Ui на его входе воспользуемся формулой коэффициента передачи усилителя с параллельной отрицательной обратной связью Kip = Uo Ui = Kp [1 bp Kp] 1 в которой Кр = А...
50602. Генераторы электрических колебаний 488 KB
  Зарисовать осциллограммы на выходе RCгенератора при 3х и 4х звенной фазосдвигающей цепочки. Исследовать зависимость амплитуды и частоты выходного сигнала а также периода самовозбуждения генератора от величины R и С и занести полученные значения в таб.5 кОм С мкФ 5 10 20 40 80 Um В 355 327 273 207 143 Т С 026 03 034 037 038 Гц 385 333 294 27 263 Tcв сек Исследование генератора на операционном усилителе.
50603. Пуск-Autodesk-Autodesk 3d Max 8-3d Max 8 516.5 KB
  Находится в верхней части окна программы и обеспечивает доступ к основным командам 3ds Mx 7. Обычно находится под главным меню но может отображаться как плавающая панель или располагаться в других местах окна. Viewports Окна проекций. Расположены в центре окна и занимают его большую часть.