10596

Математическое моделирование системы индукционного нагрева

Доклад

Математика и математический анализ

Математическое моделирование системы индукционного нагрева. Система индукционного нагрева представляет собой в общем случае источник питания индуктор нагреваемое тело и окружающую среду. Источник питания будь то генератор повышенной частоты тиристорный п...

Русский

2013-03-29

32.53 KB

35 чел.

Математическое моделирование системы индукционного нагрева.

  Система индукционного нагрева представляет собой, в общем случае, источник питания, индуктор, нагреваемое тело и окружающую среду.

  Источник питания будь то генератор повышенной частоты, тиристорный  преобразователь частоты, ламповый генератор или просто понижающий трансформатор, в ряде является довольно сложным. Рассматривать его мы не будем, т.к. отдельные стороны его функционирования излагались в курсе « Источники питания ЭТУС», и кроме того, существует теория электропривода, вполне позволяющая выяснить характер поведения источника питания  как объекта управления.

  Таким образом, будем рассматривать систему индуктор - нагреваемое тело – окружающая среда. Эта система описывается системами уравнений для электромагнитного и теплового полей.

 Прежде чем записать уравнение из этих систем сделаем ряд общепринятых для таких задач допущений (без них задача становится гораздо сложнее при незначительном выигрыше в точности).

  1. Электромагнитное поле принимается квазистационарным. Под этим понимается отсутствие запаздывания электромагнитной волны в воздухе (но не в металле). В иной формулировке длины ЭМ – волны в воздухе много больше геометрического размера системы (например длины индуктора). Это допущение позволяет пренебречь токами смещения по сравнению с токами в проводниках.  
  2. Расчет установившихся ЭМ - процессов можно проводить для величин, меняющихся по гармоническому закону. При этом ошибка в определении интегральных и распределенных энергетических параметров невелика. Это позволяет широко использовать символический метод для расчета ЭМ – полей в нелинейных ферромагнитных средах.
  3. Потери на гистерезис при нагреве ферромагнитных тел много меньше, чем на вихревые токи. Поэтому можно считать зависимость μ(Н) однозначной, а саму проницаемость – действительной величиной.
  4. Потери на гистерезис и вихревые токи в магнитопроводе не оказывают заметного влияния на ЭМ – поле вне его и их возможно учитывать отдельно при расчете теплового режима в магнитопроводе.

  Теперь запишем систему уравнений, описывающую электромагнитный процесс в поглощающих средах

rot H=J=γE;                                                                                (1)

  rot E= -= -;                                                              (2)

  div B=0;                                                                                       (3)

  div D=div()=.                                                              (4)

  Здесь Н, В, Е и D – векторы напряженности и индукции магнитного и электрического полей; J – вектор плотности тока.

  Уравнение (1) представляет собой обобщенный закон полного тока в дифференциальной форме. Уравнение (2) есть закон электромагнитной индукции в дифференциальной форме. Оба эти уравнения выражают тот факт, что переменные электрические и магнитные поля существуют совместно и являются разными сторонами единого электромагнитного процесса. Уравнение (3) является выражением принципа непрерывности магнитного потока, означающего отсутствие источников магнитного поля, а уравнение (4) представляет собой дифференциальную форму теоремы Гауса, утверждающей, что источником электрического поля являются электрические заряды.

  Температурное поле описывается дифференциальным уравнением в частных производных, вид которого зависит от формы нагреваемого тела. Для тела прямоугольной формы уравнение примет вид

.                                       (5)

   Условия теплообмена, начальные условия записываются в виде уравнений, соответствующих граничным условиям 1, 2 и 3-го рода. Например, если принять участвующей в теплообмене только одну грань с координатами х=Х; у,z=var, то уравнения будут иметь вид

  ГУ1:      T(x,y,z)=;                                                                     (6)

  ГУ2:     q;                                                                   (7)

  ГУ3:     .                                         (8)

  Более сложный вид ГУ, например, теплообмен излучением целесообразно привести к виду (7) или (8). Это упростит аналитическое решение.

ГУ4:     

  Совместное решение уравнений (1)-(4) и (5)-(8) является очень сложной задачей. Но, к счастью, этого и не требуется для задач в области ЭТУ. Чаще всего решение электромагнитной и тепловой задач производится отдельно, что вполне допустимо ввиду большой инерционности тепловых процессов по сравнению с электромагнитными.  Кроме того, зависимости свойств материала от температуры в большинстве своем ( кроме μ=f(τ) ) является близкими к линейным, что позволяет вводить в процессе решения усредненные параметры.

  На основании вышесказанного решение электромагнитной и тепловой задач будем рассматривать раздельно.

  Кроме рассмотренных двух задач в процессе нагрева возникает еще и задача термонапряжений, которые в отдельных случаях могут привести к разрушению нагреваемого тела. Эту задачу мы рассмотрим в численных методах.


 

А также другие работы, которые могут Вас заинтересовать

40898. Гібридні хвилі 91 KB
  У випадку розглянутому вище, хвильовода (стержня), ми маємо три граничні умови і дві константи в рівняннях, а тому рівняння в загальному випадку не буде мати розв’язків. Однак, тут нам потрібно розглядати не тільки, а і хвилю : Тепер поле описується чотирма константами і відповідно чотирма граничними умовами.
40899. Об’ємні резонатори 117.5 KB
  З урахуванням граничних умов на бокових стінках (стінках хвильовода): Накладемо ще дві граничні умови: звідки одержимо - неправильно. Це тому, що не врахували відбиття від торців; правильно буде записати:
40900. Відкриті резонатори 118.5 KB
  Тут не можна використовувати геометричні наближення потрібно розвязувати рівняння Максвела. Розвяжемо рівняння Максвела для сферичного діелектричного резонатора. Щоб отримати саме хвильове рівняння де була б ще й похідна необхідно зробити заміну: . Розвяжемо простіше рівняння для та методом відокремлених змінних: тоді .
40901. Метод магнітної стінки 112.5 KB
  Обернена ситуація хвиля виходить з металу або діелектрика в вакуум. Зліва стояча хвиля справа біжуча звичайна зі сталою амплітудою. вакуум метал Пряма хвиля ідбита хвиля Граничні умови:.
40902. Ортогональність власних хвиль у хвильоводі 125.5 KB
  Запишемо лему Лоренца для цього випадку. ( - стала розповсюдження.) У вигляді хвилі візьмемо властивість хвилі у хвильоводі: ; - позначення. бо розглядаємо власні хвилі і зовнішніх струмів немає.
40903. Збудження обємних резонаторів 136.5 KB
  Таким чином маємо ортонормованість власних функцій резонатора з нормою яку легко знайти. Таким чином МП псевдовектор ЕП вектор. Таким чином для гармонічних полів: . Таким чином довели строге рівняння Пуансона для електростатичної частини полів.
40904. Неоднорідності у хвильоводі 151 KB
  Таким чином ми розв’язали рівняння Максвела, не розв’язуючи їх. (Зауваження: ми не враховували електростатичних полів). Тепер зашиємо розв’язки справа та зліва, наклавши граничні умови при (всі поля повинні бути неперервні)
40905. Струми і напруги в техніці НВЧ 139 KB
  Опір хвильовода теж можна визначити порізному: . Таким чином повний опір залежить від координат. Опір в точці в точці навантаження: . Якщо тобто ми розглянули точку знаходження навантаження маємо опір .
40906. Виявлення сигналів НВЧ 107.5 KB
  Еквівалентна схема діодадетектора: Ідеальна частота оскільки лише та покращити не можна. Визначимо потужність яку цей діод може зареєструвати: знайдемо чутливість приймача на базі квадратичного детектора. Якість детектора .