10597

Тепловая задача. Основные положения. Критерии и числа подобия

Домашняя работа

Математика и математический анализ

Тепловая задача. Основные положения. Критерии и числа подобия В настоящее время существует немало как аналитических так и численных методов решения тепловых задач для тел цилиндрической и прямоугольной формы. В случае нагрева тел более сложной формы для решения п...

Русский

2013-03-29

67.46 KB

7 чел.

Тепловая задача. Основные положения. Критерии и числа подобия

  В настоящее время существует немало как аналитических , так и численных методов решения тепловых задач для тел цилиндрической и прямоугольной формы. В случае нагрева тел более сложной формы для решения пригодны только численные методы. Тем не менее, использование аналитических методов для тел правильной цилиндрической или прямоугольной формы (параллелепипед) вполне оправдало исходя и из затрат на создание модели, так и из удобства при решении задач управления.

Основные положения.

  Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры, т. е.

,                                                           (9)

где - единичный вектор, направленный по нормали в сторону возрастания температуры.

  Градиент обозначается также символом  (набла). Составляющие градиента по осям декартовых координат равны соответствующим частным производным так что

.                                    (10)

  Выражение в квадратных скобках в формуле (5) можно записать как .

 Основной закон теплопроводности Фурье.

 

  Передача тепла теплопроводностью по нормали к изотермической поверхности от мест с большей температурой к местам с меньшей температурой.

  Количество тепла, проходящее в единицу времени и отнесенное к единице площади изотермической поверхности, называется плотностью теплового потока

,                                                     (11)

где – количество тепла, проходящее в единицу времени или скорость теплового потока; S – площадь поверхности.

  Закон: Плотность теплового потока прямо пропорциональна градиенту температуры

,                                     (12)

где λ – коэффициент теплопроводности.

Коэффициент теплопроводности равен количеству тепла, протекающего в единицу времени через единицу поверхности при перепаде температуры на единицу длины нормали, равном одному градусу.

[Вт/(мград)]

Коэффициент теплопроводности зависит от температуры для металлов он линейно убывает; для газов увеличивается; для жидкостей, кроме воды и глицерина, убывает.

  Материалы с [Вт/(мград)] называются теплоизоляционными.

  Кроме λ используется коэффициент температуропроводности a

  Коэффициент а температуропроводности равен количеству тепла, протекающего в единицу времени через единицу поверхности, при перепаде объемной концентрации внутренней энергии в 1 Дж/м³ на единицу длины нормали.

Критерии и числа подобия.

  Теория подобия дает общий метод непосредственного преобразования выражений, содержащих дифференциальные операторы, к простейшим алгебраическим выражениям. Суть этого метода заключается в том, реальный процесс заменяется простейшей условной схемой, в которой все дифференциальные операторы сохраняют постоянные значения в пространстве и во времени.

Критерий Био

l - толщина пластины; - температура поверхности;  - температура среды.

;      ;   ;                       (13)

  .                                                (14)

  Соотношение между температурным переходом и температурным напором определяется непосредственно выражением .

Понятие теплотехнически тонких тел.

  В случае, когда термическое сопротивление отдачи тепла телом много больше удельного термического сопротивления переносу тепла теплопроводностью внутри тела от его поверхности к середине , то есть когда

,                                                             (15)

где - половина толщины тела, тело называется теплотехнически тонким.

  Во сколько раз должна быть меньше, чем конкретной общепринятой цифры нет, да она зависит от требований к заданному перепаду. В каждом случае расчетчик решает сам, является ли тело теплотехнически тонким. Приближенно можно принять . Такому соотношению соответствует значение критерия Био     Bi<0.25.

Критерий Фурье

  Для одномерной задачи имеем

.                                                         (16)

Заменим на , а на (индексы и l означают соответственно изменение температуры за время и на протяжении l).

Тогда запишем

;                                                                 (17)

,                                                                    (18)

- обобщенное время. Его можно назвать критерием гомохронности (однородность по времени; если для двух систем отношение имеет одно и то же значение, то для них гомохронность переходит в синхронность).

  Правильнее назвать не критерием, а обобщенной переменной или числом Фурье.

Критерий Померанцева

.                                                        (19)

Критерий Кирпичева

.                                                          (20)

Число Нуссельта

.                                                            (21)

Число Нуссельта похоже на Bi, но здесь является неизвестной величиной; используется в задачах для жидкости.

  Обобщенная (относительная) температура

                                                           (22)   

(безразмерная).


 

А также другие работы, которые могут Вас заинтересовать

925. Информационные технологии 764 KB
  Понятие о медицинской информатике. Степень интеграции микросхемы. Системы управления базами данных. Принципы взаимодействия между клиентскими и серверными частями. Преимущества протоколов удаленного вызова процедур. Локальные вычислительные сети. Численные методы решения уравнений с одной переменной.
926. Теория налогов и налогообложения 803.5 KB
  Понятие, сущность и функции налогов и сборов. Принципы определения цены для целей налогооблажения. Классификация налогов и сборов. Права и обязанности налогоплательщиков. Налоговые правонарушения и ответственность за их совершение. Порядок исполнения обязанности по уплате налогов и сборов.
927. Расчет ленточного транспортера 744.5 KB
  Краткие сведения о ленточном транспортере. Выбор электродвигателя. Определение передаточного отношения привода. Проектирование червячного редуктора. Расчет подшипников быстроходного вала. Соединение тихоходного вал – червячное колесо. Сварное соединение на приводном валу. Расчет муфты.
928. Усовершенствование технологического процесса сборки-сварки конструкции Каркас передка 52997 682.5 KB
  Высокие показатели прочности и надежности сварных соединений. Производство миниатюрных деталей и элементов. Сварка плавящимся электродом в углекислом газе. Комплектация сварной конструкции. Механические свойства стали используемой при сварке. Обоснование выбора способа сварки. Сварочный выпрямитель ВДУ-506.
929. Методы программирования 2.94 MB
  Моделирование и анализ параллельных вычислений. Описание схемы выполнения параллельного алгоритма. Программирование параллельных алгоритмов. Структура параллельной программы с использованием MPI. Передача данных от одного процесса всем процессам программы. Организация неблокирующих обменов данными между процессами. Факторы, влияющие на производительность, и способы ее повышения. Режимы параллельных вычислений с общей памятью. Обзор средств параллельного и распределенного программирования.
930. Применение моделей пассивных компонентов 541 KB
  Моделирование последовательного колебательного контура с гиратором в качестве индуктивности. Использование модели индуктивности в колебательном контуре. Параметры последовательного контура. Исследование модели конденсатора.
931. Облік та аудит реалізації продукції СТОВ 444 KB
  Організація документування та розробка робочих інструкцій первинних документів для обліку реалізації продукції. Технологічна картка бухгалтера з обліку реалізації продукції. Фінансово-економічний аналіз діяльності СТОВ Говтва Решетилівського району. Методика і технологія проведення аудиту процесу реалізації продукції.
932. Расчеты горения топлива 139 KB
  Расчёт теплоты сгорания топлива. Определение теоретически необходимого и фактического расхода воздуха. Определение выхода и состава продуктов горения. Определение теоретической и действительной температуры горения.
933. Расчет нагрева металла 256.5 KB
  Расчет времени нагрева металла в методической зоне. Средняя температура металла по сечению. Расчет времени нагрева металла в сварочной зоне. Расчет времени томления металла.