10598

Методы решения краевых задач. Метод разделения переменных (Метод Фурье)

Домашняя работа

Математика и математический анализ

Методы решения краевых задач. Метод разделения переменных Метод Фурье. Метод разделения переменных относится к классическим методам решения линейного дифференциального уравнения теплопроводности. При его применении вначале находится совокупность частных решений...

Русский

2013-03-29

119.66 KB

150 чел.

Методы решения краевых задач. Метод разделения переменных (Метод Фурье).

Метод разделения переменных относится к классическим методам решения линейного дифференциального уравнения теплопроводности. При его применении вначале находится совокупность частных решений линейного однородного дифференциального уравнения теплопроводности, удовлетворяющих однородным граничным условиям, затем в силу принципа суперпозиций составляется ряд из этих решений.

где коэффициенты определяются из начальных условий.

  Метод применим для конечных областей.

  Рассмотрим метод Фурье применительно к следующей задаче

                                        (23)

( ).

В случае декартовых координат   ;

;

- конечная пространственная область.

  Предположим, что ГУ приведены к однородным. Тогда, частное решение уравнения (23) ищем в виде произведения двух функций

,                                     (24)

одна из которых зависит только от времени, а другая - только от пространственных координат; А- произвольная постоянная.

  Если (24) подставить в (23), то получим два дифференциальных уравнения относительно  

;                                       (25)

относительно

;                                        (26)

где - постоянная разделения.

  Решение (25) элементарно

  Решение (26) получено лишь для некоторых частных случаев.

  Задача нахождения тех значений постоянной , для которых существуют нетривиальные решения уравнения (26) (называется собственными функциями), удовлетворяющие граничным условиям, называется задачей Штурма-Лиувилля.

  При постоянном коэффициенте  задача Штурма-Лиувилля решена для тел, образованных пересечением координатных поверхностей в различных системах координат. Например, для одномерной задачи решение уравнения (26) имеет вид

в прямоугольных координатах

;                                             (27)

в сферических координатах

;                                 (28)

в цилиндрических координатах

,                                           (29)

где С, D – произвольные постоянные; а числа определяются из граничных условий задачи; - функция Бесселя первого ряда нулевого порядка; - функция Бесселя второго рода нулевого порядка.

  Определив выражения для функций и , решение уравнения (23) с соответствующими ГУ представится в виде

,

где - собственные функции, отвечающие собственным числам .

  Определим коэффициенты из начального условия [при  ]

,

где - рассматриваемая конечная область; N – норма собственной функции , равная

.

При этом используется ортогональность собственных функций , является свойством собственных функций задачи Штурма-Лиувилля.

  Окончательно решение краевой задачи имеет вид

.            (30)

При условии, что ряд (30) допускает почленное дифференцирование дважды по пространственным координатам и один раз по времени.

Нагрев неограниченной пластины.

  Дана неограниченная пластина, толщина которой равна 2R. В начальный момент времени пластина помещается в среду с постоянной температурой . Между ограничивающими поверхностями пластины и окружающей средой происходит теплообмен по закону Ньютона. Найти распределение температуры по толщине пластины в любой момент времени.

  Дифференциальное уравнение теплопроводности и его краевые условия имеют вид

, ,  -R<x<R,                                                  (31)

T(x,0)=f(x);                                                             (32)

;                                               (33)

.                                              (34)

  Решение проведем методом разделения переменных. Предположим, что функция четная, то есть , поэтому . Тогда вместо граничного условия (34) можно записать

.                                                          (35)

  Введем новую функцию , позволяющую свести задачу на нагревание к задаче на охлаждение. Очевидно, что исходное дифференциальное уравнение относительно функции не изменится, а граничное условие (33) приведется к однородному виду. Частное решение задачи будем искать в виде

.

После подстановки в уравнение (31) получим

.

Интегрирование уравнения дает .

Дифференциальное уравнение для определения имеет вид

.

Известно общее решение этого уравнения

.

Тогда частное решение уравнения (31) примет следующий вид

.

Из условия симметрии процесса теплопроводности (35) следует

.

Это означает, что , тогда

.

Значение постоянной разделения определим, удовлетворяя ГУ (32). Имеем

;

,                                     (36)

где - относительный коэффициент теплоотдачи.

  Преобразовав уравнение (36), получим

,                                                   (37)

где .

Обозначив через , характеристическое уравнение (37) можно написать в виде

.

Корни этого уравнения приведены в Т 2.1 [1].

Следовательно, общее решение краевой задачи (31)-(35) имеет вид

.

  Для определения постоянных воспользуемся начальным условием (32) и ортогональностью функций в промежутке [-R; R]

.

Умножим обе части этого равенства на и проинтегрируем в промежутке     [-R; R], тогда получим соотношение для коэффициентов

.                  (38)

Общее решение задачи с учетом соотношения (38)

.                      (39)

Для случая, когда является нечетной функцией, частное и общее решения задачи соответственно имеют следующий вид

;

,

где - корни трансцендентного уравнения .

  Первые шесть корней этого уравнения приведены в Т 2.2[1] для различных значений Bi.

  При равномерном начальном распределении температуры, то есть f(x)=, распределение температуры (39) в безразмерной форме

.


 

А также другие работы, которые могут Вас заинтересовать

64520. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ 253.64 KB
  Энергетический обмен диссимиляция катаболизм совокупность реакций расщепления органических соединений сопровождающихся выделением энергии. Питание процесс потребления энергии и веществ.
64521. Основные этапы становления дипломатических школ 32.5 KB
  В Средневековье не мог существовать институт светского суверенитета дипломатия не имела в своем распоряжении постоянного дипломатического представительства послы в этой системе направлялись к другому правителю по конкретному случаю. Начался бурный расцвет светского права.
64522. Предмет и основные понятия информатики 15.4 KB
  Информатика это комплексная техническая наука которая систематизирует приемы создания сохранения воспроизведения обработки и передачи данных средствами вычислительной техники а также принципы функционирования этих средств и методы управления ними.
64524. Предмет и содержание дисциплины «Охраны труда» 30 KB
  В соответствии с ТК РБ охрана труда это система обеспечения безопасности жизни и здоровья работников в процессе трудовой деятельности включающая правовые социально-экономические организационно-технические гигиенических и лечебно-профилактические мероприятия и средства.
64526. Российское многонациональное государство – империя особого типа 18.86 KB
  Но для того чтобы понять чем Российская империя отличалась от других империй необходимо понять что такое империя западного тип и что такое империи вообще Итак: империя конгломерат народов образующих политическую экономическую и культурную систему где ведущая роль...
64527. Онтологическая проблема 30.9 KB
  Откуда возникло живое из неживого Откуда возникло сознание из чего Очень часто эту проблему интерпретируют как психофизиологическую. Как сознание можно вывести из физиологии Физиология некий автомат. И вдруг у этого автомата появляется сознание.
64528. Теория и методика обучения праву 61 KB
  Цель: состоит в предметном ознакомлении студентов с теоретическими и методологическими основами а также с практическими формами и приемами различных методик правового обучения. Задачи: освоение теоретических основ обучения праву различных категорий населения прежде...