10607

Электродуговой нагрев. Общие положения. Постановка тепловой задачи. Методы решения. Устойчивость дуги

Лекция

Математика и математический анализ

Электродуговой нагрев. Общие положения. Постановка тепловой задачи. Методы решения. Устойчивость дуги Электрическая дуга представляет собой один из видов электрических разрядов в газах при котором наблюдается прохождение электрического тока через газовый промежут...

Русский

2013-03-29

292.5 KB

39 чел.

Электродуговой нагрев. Общие положения. Постановка тепловой задачи. Методы решения. Устойчивость дуги

Электрическая дуга представляет собой один из видов электрических разрядов в газах, при котором наблюдается прохождение электрического тока через газовый промежуток под воздействием электрического поля. Электрическую дугу, используемую для сварки металлов, называют сварочной дугой. Дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. При сварке на постоянном токе электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному - катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка называют длиной дуги. В обычных условиях при низких температурах газы состоят из нейтральных атомов и молекул и не обладают электрической проводимостью. Прохождение электрического тока через газ возможно только при наличии в нем заряженных частиц - электронов и ионов. Процесс образования заряженных частиц газа называют ионизацией, а сам газ - ионизованным. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией (испусканием) электронов с поверхности отрицательного электрода (катода) и ионизацией находящихся в промежутке газов и паров. Дуга, горящая между электродом и объектом сварки, является дугой прямого действия. Такую дугу принято называть свободной дугой в отличие от сжатой, поперечное сечение которой принудительно уменьшено за счет сопла горелки, потока газа, электромагнитного поля. Возбуждение дуги происходит следующим образом. При коротком замыкании электрода и детали в местах касания их поверхности разогреваются. При размыкании электродов с нагретой поверхности катода происходит испускание электронов - электронная эмиссия. Выход электронов в первую очередь связывают с термическим эффектом (термоэлектронная эмиссия) и наличием у катода электрического поля высокой напряженности (автоэлектронная эмиссия). Наличие электронной эмиссии с поверхности катода является непременным условием существования дугового разряда.

По длине дугового промежутка дуга разделяется на три области (рис. 1): катодную, анодную и находящийся между ними столб дуги. Катодная область включает в себя нагретую поверхность катода, называемую катодным пятном, и часть дугового промежутка, примыкающую к ней.

Рис. 1. Строение электрической дуги и распределение напряжения в ней: 1 - катодная область, 2 - столб дуги, 3 - анодная область

Протяженность катодной области мала, но она характеризуется повышенной напряженностью и протекающими в ней процессами получения электронов, являющимися необходимым условием для существования дугового разряда. Температура катодного пятна для стальных электродов достигает 2400 - 2700°С. На нем выделяется до 38% общей теплоты дуги. Основным физическим процессом в этой области является электронная эмиссия и разгон электронов. Падение напряжения в катодной области UK составляет порядка 12 - 17 В.

Анодная область состоит из анодного пятна на поверхности анода и части дугового промежутка, примыкающего к нему. Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Оно имеет примерно такую же температуру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты, чем на катоде. Анодная область также характеризуется повышенной напряженностью. Падение напряжения в ней Uк составляет порядка 2 - 11 В. Протяженность этой области также мала.

В столбе дуги при всех условиях горения ее наблюдается устойчивое равновесие между процессами ионизации и рекомбинации. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении его одновременно находятся равные количества противоположно заряженных частиц. Температура столба дуги достигает 6000 - 8000°С и более. Падение напряжения в нем Uc изменяется практически линейно по длине, увеличиваясь с увеличением длины столба. Падение напряжения зависит от состава газовой среды и уменьшается с введением в нее легко ионизующихся компонентов. Такими компонентами являются щелочные и щелочно-земельные элементы (Са, Na, К и др.). Общее падение напряжения в дуге Uд = Uк + Uа + Uс. Принимая падение напряжения в столбе дуги в виде линейной зависимости, его можно представить формулой Uс = Еlс, где Е - напряженность по длине, lс - длина столба. Значения Uк, Uа, Е практически зависят лишь от материала электродов и состава среды дугового промежутка и при их неизменности остаются постоянными при разных условиях сварки. В связи с малой протяженностью катодной и анодной областей можно считать практически lс = lд. Тогда получается выражение Uд = a + blд показывающее, что напряжение дуги прямым образом зависит от ее длины, где а = Uк + Uа; b = Е.

Непременным условием получения качественного сварного соединения является устойчивое горение дуги (ее стабильность). Под этим понимают такой режим ее существования, при котором дуга длительное время горит при заданных значениях силы тока и напряжения, не прерываясь и не переходя в другие виды разрядов. При устойчивом горении сварочной дуги основные ее параметры- сила тока и напряжение- находятся в определенной взаимозависимости. Поэтому одной из основных характеристик дугового разряда является зависимость ее напряжения от силы тока при постоянной длине дуги. Графическое изображение этой зависимости при работе в статическом режиме (в состоянии устойчивого горения дуги)называют статической вольтамперной характеристики дуги (рис. 2).

С увеличением длины дуги ее напряжение возрастает и кривая статической вольтамперной характеристики поднимается выше, с уменьшением длины дуги опускается ниже, качественно сохраняя при этом свою форму. Кривую статической характеристики можно разделить на три области: падающую, жесткую и возрастающую. В первой области увеличение тока приводит к резкому падению напряжения дуги.

Это обусловлено тем, что с увеличением силы тока увеличиваются площадь сечения столба дуги и его электропроводность. Горение дуги на режимах в этой области отличается малой устойчивостью. Во второй области увеличение силы тока не связано с изменением напряжения дуга. Это объясняется тем, что площадь сечения столба дуги и активных пятен изменяется пропорционально силе тока, в связи с чем плотность тока и падение напряжения в дуге сохраняются постоянными.

Рис. 2. Статическая вольтамперная характеристика дуги

Сварка дугой с жесткой статической характеристикой находит широкое применение в сварочной технологии, особенно при ручной сварке. В третьей области с увеличением силы тока напряжение возрастает. Это связано с тем, что диаметр катодного пятна становится равным диаметру электрода и увеличиваться далее не может, при этом в дуге возрастает плотность тока и падает напряжение. Дуга с возрастающей статической характеристикой широко используется при автоматической и механизированной сварке под флюсом и в защитных газах с применением тонкой сварочной проволоки. При механизированной сварке плавящимся электродом иногда применяют статическую вольтамперную характеристику дуги, снятую не при постоянной ее длине, а при постоянной скорости подачи электродной проволоки (рис. 3).

Рис. 3. Статическая вольтамперная характеристика дуги при разных скоростях подачи электродной проволоки: а - малая скорость, б - средняя скорость, в - большая скорость

Как видно из рисунка, каждой скорости подачи электродной проволоки соответствует узкий диапазон токов с устойчивым горением дуга. Слишком малый сварочный ток может привести к короткому замыканию электрода с изделием, а слишком большой- к резкому возрастанию напряжения и ее обрыву.

Устойчивость дуги

При сварке на постоянном токе в установившемся режиме все процессы в дуге протекают с определенной скоростью и горение дуги отличается высокой стабильностью.

При питании дуга переменным током полярность электрода и изделия, а также условия существования дугового разряда периодически изменяются. Так, дуга переменного тока промышленной частоты 50 Гц погасает и вновь возбуждается 100 раз в секунду, или дважды за каждый период. Поэтому особо возникает вопрос об устойчивости горения дуги переменного тока. В первую очередь устойчивость горения такой дуги зависит от того, насколько легко происходит повторное возбуждение дуги в каждом полупериоде. Это определяется ходом физических и электрических процессов в дуговом промежутке и на электродах в отрезки времени между каждым погасанием и новым зажиганием дуги. Снижение тока сопровождается соответствующим уменьшением температуры в столбе дуги и степени ионизации дугового промежутка. При переходе тока через нуль и перемене полярности в начале и конце каждого полупериода дуга гаснет. Одновременно падает и температура активных пятен на аноде и катоде. Падение температуры несколько отстает по фазе при переходе тока через нуль, что связано с тепловой инерционностью процесса. Особенно интенсивно падает температура активного пятна, расположенного на поверхности сварочной ванны, в связи с интенсивным отводом теплоты в массу детали. В следующий за погасанием дуги момент меняется полярность напряжения на дуговом промежутке (рис. 4).

Рис. 4. Изменение полярности при горении дуги на переменном токе

Одновременно изменяется и направление движения заряженных частиц в дуговом промежутке. В условиях пониженной температуры активных пятен и степени ионизации в дуговом промежутке повторное зажигание дуги в начале каждого полупериода происходит только при повышенном напряжении между электродами, именуемым пиком зажигания или напряжением повторного зажигания дуги. Пик зажигания всегда выше напряжения дуги, соответствующего стабильному режиму ее горения. При этом величина пика зажигания несколько выше в тех случаях, когда катодное пятно находится на основном металле. Величина пика зажигания существенно влияет на устойчивость горения дуги переменного тока. Деионизация и охлаждение дугового промежутка возрастают с увеличением длины дуги, что приводит к необходимости дополнительного повышения пика зажигания и влечет снижение устойчивости дуги. Поэтому затухание и обрыв дуги переменного тока при прочих равных условиях всегда происходят при меньшей ее длине, чем для постоянного тока. При наличии в дуговом промежутке паров легко-ионизующихся элементов пик зажигания уменьшается и устойчивость горения дуга переменного тока повышается.

С увеличением силы тока физические условия горения дуги улучшаются, что также приводит к снижению пика зажигания и повышению устойчивости дугового разряда. Таким образом, величина пика зажигания является важной характеристикой -дуги переменного тока и оказывает существенное влияние на ее устойчивость. Чем хуже условия для повторного возбуждения дуги, тем больше разница между пиком зажигания и напряжением дуги. Чем выше пик зажигания, тем выше должно быть напряжение холостого хода источника питания дуги током. При сварке на переменном токе неплавящимся электродом, когда материал его и изделия резко различаются по своим теплофизическим свойствам, проявляется выпрямляющее действие дуги. Это характеризуется протеканием в цепи переменного тока некоторой составляющей постоянного тока, сдвигающей в определенном направлении кривые напряжения и тока от горизонтальной оси (рис. 5). Наличие в сварочной цепи составляющей постоянного тока отрицательно сказывается на качестве сварного соединения и условиях процесса: уменьшается глубина проплавления, увеличивается напряжение дуги, значительно повышается температура электрода и увеличивается его расход. Поэтому приходится применять специальные меры для подавления действия постоянной составляющей.

Рис. 5. Постоянная составляющая тока в сварочной цепи при горении дуги на переменном токе: Uи - напряжение источника питания дуги, Uд - напряжение дуга, Iд - ток дуги, Iп - постоянная составляющая тока

При сварке плавящимся электродом, близким по составу к основному металлу, на режимах, обеспечивающих устойчивое горение дуги, выпрямляющее действие дуги незначительно и кривые тока и напряжения располагаются практически симметрично относительно оси абсцисс.

Лекция 16

Тема 5.2 Дифференциальное уравнение, описывающее дугу

Классическая каналовая модель.

   Уравнение Эленбааса-Хеллера (1934 г.)

   Уже в тридцатых годах прошлого столетия на основе теоретических и экспериментальных работ сформировалось представление, что в столбе дуг высокого давления с достаточно хорошим приближением реализуется состояние термической плазмы. Под этим термином подразумевается, что все основные процессы в такой плазме являются однозначными функциями температуры, одинаковой для всех плазменных частиц. На основе этого Эленбаасом и Хеллером была предложена теория столба дуги, которая послужила основой для последующих теорий. Проведем элементарный вывод основного уравнения этой теории, описывающего баланс энергии в плазме разряда.

    Предварительно оговорим исходные условия. Анализируем однородный по длине цилиндрический столб дуги в продольном электрическом поле, напряженность которого Е. Считаем, что дуга горит в неподвижном газе, находящемся при постоянном давлении в охлаждаемой трубке радиуса Rt. Рассматриваем режимы, при которых излучательные потери энергии из столба малы, а потери энергии из столба определяются в основном процессами теплопроводности в столбе дуги.

    Как известно, тепловой поток в среде описывается выражением

J= - λgradT.           (1)


Здесь
J - удельный тепловой поток, λ - коэффициент теплопроводности, Т - температура.

    В силу допущенной однородности столба по длине и его цилиндрической симметрии все параметры вещества в столбе являются функциями только текущего радиуса столба r. В частности, градиент температуры в этом случае представляет собой производную от температуры по радиусу, то есть в столбе реализуются лишь радиальные потоки тепла.

    Чтобы записать дифференциальное уравнение, описывающее связь между параметрами столба, проанализируем энергобаланс тонкого цилиндрического слоя столба радиуса r и толщины Δr. Для упрощения записи выкладок рассмотрим энергобаланс цилиндрического слоя в расчете на единицу его длины. Очевидно, что энергобаланс слоя складывается из следующих частей: входящего теплового потока Q+ через внутреннюю стенку слоя радиуса r; тепловой энергии QE, генерируемой в слое протеканием тока, и выходящего теплового потока Q- через наружную стенку слоя радиуса r+Δr. В итоге баланс запишется в виде:

Q+ + QE=Q-.          (2)


Раскроем выражения, входящие в энергобаланс.
Входящий тепловой поток представим в виде:

Q+ = 2πrJ(r).          (3)


Мощность тепловой энергии
QE , генерируемой в цилиндрическом слое за счет протекания тока, запишем как:

QE = 2πrΔrσ(r) E2,         (4)


где
σ(r) - удельная электропроводность среды в слое радиуса r.

Величину
Q- выразим следующим образом:

Q- = 2π(r+Δr)J(r+Δr) = 2π(r+Δr)( J(r) + (dJ/dr)Δr).       (5)

   Подставляя выражения (3-5) в уравнение энергобаланса (2), придем после элементарных преобразований полученного выражения к дифференциальному уравнению, которое, обычно, записывается в виде:

-r-1d(rJ)/dr + σE2 = 0.         (6)

Это и есть известное уравнение Элеенбаса-Хеллера. Граничные условия для него: на оси столба (r=0) производная dT/dr=0 вследствие симметрии, при r = Rt температура T = Tt , где Tt - температура стенок трубки.

Каналовая модель дуги (1932 г.). Принцип минимума Штеенбека.

    Решить уравнение (6) в общем виде аналитически не удалось до настоящего времени. Однако разрабатывались различные приближенных методы его решения.
    В частности, известен метод приближенного решения этой задачи, основанный на учете качественного различия разных областей дуги. Эти различия отражены в хорошо известной каналовой модели дуги, предложенной Штеенбеком в 1932 г., то есть еще до установления уравнения (6). Данная модель учитывает тот факт, что электропроводность плазмы очень сильно зависит от температуры. Температура в столбе дуге спадает от оси к стенкам, поэтому основная часть тока протекает в приосевой области трубки, где температура наиболее высокая. Поэтому в предложенной модели столб дуги делят на зону проводимости диаметром
2R с постоянным значением температуры Т и зону потерь энергии, температура которой изменяется от величины Т до Тt - температуры стенок, окружающей столб трубки. Причем в зоне потерь энергии считается, что электропроводность вещества равна нулю, то есть ток через эту зону не течет.
    Протекание тока через центральную зону каналовой модели описывается законом Ома:

I =πR2σ(T)E.         (7)

При постоянной силе тока дуги I и заданной температуре стенок трубки Tt это выражение связывает между собой три переменные величины T, R и E. 

   Чтобы получить еще одно независимое выражение, связывающее эти величины, проинтегрируем уравнение (6) в бестоковой зоне каналовой дуги, учитывая, что в этой зоне σ=0. Интегрирование показывает, что величина rJ(r) постоянна в этой зоне, что само по себе очевидно, кроме того, она равна:

rJ=IE/2π.          (8)

Это следует из того, что электрическая мощность, выделяемая в канале, равна IE, поэтому тепловой поток на границе R равен IT/2π.
Замена в (8) величины потока
J его явным выражением -λdT/dr приведет к нелинейному дифференциальному уравнению, но эту трудность удается обойти, путем введения функцию:

Θ =0Tλ(T)dT.         (9)

Эта функция обладает тем свойством, что производная от нее, как легко видеть, равна тепловому потоку J, взятому с обратным знаком:

dΘ/dr = - J.         (10)


Из сравнения выражений (8) и (10) вытекает легко интегрируемое дифференциальное уравнение:

dΘ/dr = - (IE/2π)r-1.         (11)


Интегрирование обеих частей этого выражения от
Rt до R приводит к следующему уравнению, связывающему величины I, T и R:

Θ(T) - Θ(Tt)=(IE/2π)ln(Rt/R).         (12)

Таким образом, мы имеем два уравнения (7) и (12), которые при заданной силе тока I и заданных условиях окружающей среды (T=Tt при r=Rt) связывают три переменные T, r и E. Исключая из этих выражений одну из переменных, например, переменную T, получим бесконечную последовательность режимов горения дуги выражаемую функциональной зависимостью E (r).

Чтобы из указанной последовательности режимов можно было выбрать тот, который фактически реализуется, используется допущение, известное как минимальный принцип Штеенбека. Согласно этому допущению при заданной силе тока и фиксированных условиях окружающей среды реализуется тот режим, при котором напряженность электрического поля минимальна. Другими словами при этом режиме производная

dE/dr = 0.         (13)

Принцип Штеенбека был не раз проверен при исследовании дуговых разрядов. При этом были получены результаты, удивительно хорошо согласующиеся с экспериментом [4]. Однако вопрос обоснования этого принципа не перестает волновать исследователей до настоящего времени.

    Подводя итоги, можно сказать, что каналовая модель позволяет рассчитать температуру и напряженность поля в дуге. Однако эти расчеты сложны, поэтому имеются расхождения между данными разных авторов. Ведь при расчете теплопроводности λ(Т) плазмы приходится учитывать большое количество процессов, поскольку она складывается из величин теплопроводности молекул (в случае молекулярных газов), атомов, ионов, электронов; кроме того, нужно учесть также вклад от диффузии энергий ионизации и диссоциации. 


Учет всех этих процессов приводит к сложной зависимости теплопроводности плазмы
λ(T) от температуры. На рис.1 представлена для иллюстрации типичная зависимость теплопроводности от температуры. Здесь же изображена функция Θ(Т). Видно, что за счет интегрирования эта функция существенно «глаже», чем функция теплопроводности. Ее приближенно можно аппроксимировать отрезком прямой линии.

   Отметим в заключение раздела основные особенности классической каналовой модели дуги, следующие из приведенного краткого ее описания.

Во-первых, в этой модели токовый канал рассматривается как цилиндрический однородный бесструктурный омический нагреватель c погонной мощностью
EI, имеющий температуру T.

Во-вторых, основную роль в ней играют процессы теплопроводности в газообразной фазе бестоковой зоны столба дуги.

В-третьих, из каналовой модели вытекают два соотношения, связывающие три неизвестные величины, характеризующие канал дуги:
T, E, R, которые следует определить. Чтобы однозначно определить эти величины, требуется третье соотношение, связывающее эти величины. Однако непосредственно такое соотношение из классической модели не вытекает.

    Поэтому для получения недостающего соотношения Штеенбеком был сформулирован принцип минимума, который непонятно как связан с каналовой моделью, но применение которого, тем не менее, приводит к хорошему согласию модельных вольтамперных характеристик канала дуг с экспериментальными.

   Электрическая дуга является преобразователем электрической энергии в световую (излучательную) и тепловую. Для технических применений важно знать энергетические параметры дуги и, в первую очередь, величину поглощаемой ею электрической мощности. Поэтому одной из задач, которые следовало для этого решить, была, в частности, задача научиться рассчитывать вольт-амперную характеристику проводящего канала дуги. Техническая потребность в этом и привела к разработке классической модели каналовой дуги.

PAGE  53


 

А также другие работы, которые могут Вас заинтересовать

7923. Як зацікавити сучасних школярів предметами духовно-морального спрямування 17.73 KB
  Як зацікавити сучасних школярів предметами духовно-морального спрямування. Ессе на конкурс до Острозької академії. На сучасному етапі розвитку українського суспільства постає проблема виховання моральності школярів. Так як, батьківська турбота сьогодні, в основному, орієнтується на матеріа...
7924. Правобережна Україна в другій половині ХVIII століття 65.5 KB
  Тема уроку. Правобережна Україна в другій половині ХVIII століття. Мета уроку: охарактеризувати події другої половині ХVIII століття на території правобережної України розглянути особливості повстань на західній Україні розвивати вміння учнів анал...
7925. Радянсько-фінська війна 50.5 KB
  Тема уроку: Радянсько-фінська війна. Мета уроку: Розкрити зміст Радянсько-фінської війни навчити аналізувати історичні факти сприяти вихованню почуття патріотизму. Радянсько-фінська війна, або Зимова війна (фін. talvisota) - збройний конфлік...
7926. ІІІ універсал. Проголошення УНР 31.5 KB
  Тема уроку. ІІІ універсал. Проголошення УНР Мета. Розглянути основні положення ІІІ універсалу та передумови та причини виникнення УНР. розвивати навички аналізу історичних фактів, вміння виділяти головне, сприяти формуванню національної свідомості у...
7927. Розуміння методу та закону пізнання 54 KB
  Розуміння методу та закону пізнання Метод(від грецького метод - буквально: шлях до чогось) - у найширшому значенні - спосіб досягнення мети, певним чином упорядкована діяльність. Як засіб пізнання ме...
7928. Короткий нарис розвитку історичної науки в Україні 136.5 KB
  Короткий нарис розвитку історичної науки в Україні. Виникнення і розвиток історичних знань до кінця XVIII ст. Першоджерелом історичних знань, уявлень про минуле людського суспільства була усна народна творчість, яка знайшла своє відображення в істор...
7929. Україна напередодні Першої світової війни 41 KB
  Тема уроку. Україна напередодні Першої світової війни Мета: Порівняти плани країн Антанти та Троїстого союзу щодо України описати становище українського населення на початку війни та пояснити, яким було ставлення політиків України до війни. Охаракт...
7930. Воєнні дії на території України у 1914 році 20.4 KB
  Тема уроку. Воєнні дії на території України у 1914 році. Мета: розглянути хід воєнних дій на українських землях у 1914 р. розкрити суть політики російської адміністрації ознайомити учнів зі станом українського національного руху в Наддніпрянській ...
7931. Українська революція 1917—1920 pp. Проголошення ЗУНР і включення Східної Галичини до складу Польщі 118 KB
  Українська революція 1917- pp. Проголошення ЗУНР і включення Східної Галичини до складу Польщі Після розпаду Австро-Угорської імперії на зборах політичних і громадських діячів Галичини і Буковини у Львові 18 жовтня 1918 р. була ство...