10656

Интерполирование функций методом Лагранжа. Линейная интерполяция

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 7 Интерполирование функций методом Лагранжа. Линейная интерполяция. Цель работы. По результатам эксперимента заданным в виде последовательности точек на координатной плоскости построить интерполяционную функцию методом Лагранжа...

Русский

2013-03-30

291 KB

76 чел.

Лабораторная  работа  7

Интерполирование функций методом Лагранжа.

Линейная интерполяция.

Цель работы. По результатам эксперимента, заданным в виде последовательности точек на координатной плоскости - , построить интерполяционную функцию методом Лагранжа - . Выполнить линейную интерполяцию между двумя любыми соседними узлами, оценить точность полученных результатов.  

Теоретические положения .  Пусть в некоторых точках   известны значения функции  :   .  Необходимо определить величины функции  при других  значениях . Связь  неизвестна. Для решения этой задачи функцию   требуется приближенно заменить (аппроксимировать) некоторой функцией  так, чтобы отклонение  от  в заданной области было наименьшим. На практике чаще всего применяется аппроксимация многочленами, т.е.

.             (1)

Если коэффициенты   определяются из условия совпадения  

,                                 (2)

то такой способ аппроксимации называется интерполяцией. Точки  называ-ются узлами интерполяции, а  - интерполирующей функцией. Заметим, что при интерполировании  .

Рассмотрим процесс интерполирования функций с помощью полино-мов Лагранжа. Исходя из условия задачи, т.е.  для   ,  имеем полином третьего порядка:

          (3)

для которого, очевидно, должно выполняться:   .

Форма (3) наглядно показывает, как получается полином любого порядка, но имеет больше теоретическое значение.  Для практического  же применения  более удобна запись в форме (1),  которую нетрудно получить из (3),  подставляя  туда заданные числа   и  , и выполняя очевидные преобразования.

Для реализации линейной интерполяции следует взять два любых соседних узла, например,   и    и по заданному  промежуточному значению аргумента  найти  соответствующее значение функции по формуле:

,                      (4)                       

Графически линейная интерполяция сводится к соединению прямой линией точек с координатами   и .

Порядок выполнения работы.  

- переписать требуемый вариант задания,

- погрешность расчетов принять равной  ,

- записать теоретическую функцию  ,

- преобразуем полином Лагранжа   к виду

,                     (5)

для чего найдем коэффициенты  :

 а) для суммы (3) вначале вычислим четыре константы:

,           

,

,                 (6)

,

Проверка:          .

б) все числители (3) представляют собой выражения вида (например, для первого слагаемого)

 ,        (7)

для вычисления  коэффициентов   воспользуемся теоремой Виета

                     (8)

в) итоговая функция (4) находится так:

         (9)

- записать полином (5) с вычисленными коэффициентами  ,

- по формуле    построить график по 21 точке с шагом  ,

- между двух любых крайних узлов  или   выполнить линейную интерполяцию по формуле (4), взяв в качестве   середину выбранного отрезка. Найти  . Весь процесс нанести на координатную плоскость, объединив его с функцией  .

- Оценка результатов:  

принимая в качестве точного значения величину , найти  абсолютную погрешность , а затем величину относительной погрешности     для линейной зависимости.

Варианты исходных данных.  Функция    задана в четырех точках       своими значениями   :

1

X

-1

1

2

7

2

X

-5

-1

2

3

Y

0

4

15

400

Y

-156

-4

5

20

3

X

-5

-2

2

3

4

X

-5

-2

1

2

Y

-96

-3

9

32

Y

-144

-9

0

3

5

X

-3

-2

1

3

6

X

-4

-3

1

3

Y

-34

-11

-2

14

Y

-51

-20

4

40

7

X

-3

1

2

4

8

X

-5

-4

3

4

Y

-40

0

5

51

Y

-96

-45

32

75

9

X

-5

-4

2

4

10

X

-3

-1

2

4

Y

-144

-75

3

45

Y

-34

-2

1

43

11

X

-6

-2

2

3

12

X

-7

-5

-2

1

Y

-185

-5

15

40

Y

-400

-156

-15

0

13

X

-4

-1

3

5

14

X

-5

-3

1

4

Y

-45

0

32

144

Y

-144

-32

0

45

15

X

-3

0

4

5

16

X

-6

-3

1

2

Y

-34

-1

43

94

Y

-185

-20

4

15

17

X

-4

-2

3

6

18

X

-4

-2

4

5

Y

-85

-15

20

185

Y

-45

-3

75

144

19

X

-4

-3

4

5

20

X

-2

2

3

5

Y

-75

-32

45

96

Y

-11

1

14

94

21

x

-4

-2

3

7

22

X

-4

-1

4

5

y

-51

-5

40

400

Y

-85

-4

51

104

23

x

-2

-1

2

5

24

X

-3

-2

2

5

y

-3

0

9

144

Y

-32

-9

3

96

25

x

-2

-1

4

5

26

X

-1

1

2

7

y

-11

-2

43

94

Y

0

4

15

400

27

x

-5

-1

2

3

28

X

-5

-2

2

3

y

-156

-4

5

20

Y

-96

-3

9

32

29

x

-5

-2

1

2

30

X

-3

-2

1

3

y

-144

-9

0

3

Y

-34

-11

-2

14

         Пример расчета .

  1.  Цель работы: обработать результаты таблицы данных с целью построения интерполяционной функции методом Лагранжа.
  2.  Исходные данные: таблица опытных данных.

 

X0

x1

x2

x3

x

-5

-4

3

4

y

-96

-45

32

75

 

Y0

y1

y2

y3

 

               

               

               

               Погрешность расчетов   =  10-3 ,      

  1.  Интерполяционный полином Лагранжа:

Требуется получить функцию , так чтобы

,       

  1.  Находим коэффициенты ,
  2.  Находим  константы   по формулам (6):

           

             

              Проверка:

                 

              k0= 1.333     k1= -0.804    k2= -0.571   k3=1.042

  1.  Все числители представляют собой выражения вида (7) (назовем их частными многочленами):

,  где коэффициенты находятся по теореме Виета  - формулы (8):

                            

  

  

      

         

  

  1.  Найдем итоговую функцию:

- умножим вначале частные многочлены на соответствующие коэффициенты  ,   

- сложим коэффициенты при одинаковых степенях  , найдем числа  и запишем требуемую функцию  

                                                                                     .

8.Таблица из 21 точки  в диапазоне исходных данных ,

X

-5,000

-4,550

-4,100

-3,650

-3,200

-2,750

-2,300

-1,850

-1,400

-0,950

Y

-95,976

-69,943

-49,031

-32,693

-20,382

-11,552

-5,655

-2,146

-0,477

-0,101

X

-0,500

-0,050

0,400

0,850

1,300

1,750

2,200

2,650

3,100

3,550

4,000

Y

-0,473

-1,044

-1,269

-0,600

1,509

5,605

12,234

21,944

35,281

52,792

75,024

9.Между двух крайних узлов [-5;-4] выполняем линейную интерполяцию, взяв в качестве xпромежуточного середину выбранного отрезка. Надо найти yпромежуточное.

Линейная интерполяция – это замена на отрезке x0-x1 неизвестной нам кривой y = f(x) прямой линией. Такая замена приводит к погрешности. Но из-за явной простоты метода он находит широкое применение. Максимальная погрешность около середины отрезка. Уравнение прямой проходящей через две точки имеет вид:

              вместо x  при xпр получим y=yпр

 

подставляем значения, получаем:

тогда

разница между точным значение y и промежуточным значением y 

абсолютная погрешность      

По результатам  п.8  и  п.9  выполнить рисунок.

10.Выводы  по  работе:   Делаются  студентом  самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

66905. Логические элементы 441 KB
  Рассматриваются принципы работы, характеристики и типовые схемы включения простейших логических элементов — инверторов, буферов, элементов И и ИЛИ, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.
66906. Модели и процессы управления проектами программных средств 257.5 KB
  Назначение методологии СММ/CMMI – системы и модели оценки зрелости – состоит в предоставлении необходимых общих рекомендаций и инструкций предприятиям, производящим ПС, по выбору стратегии совершенствования качества процессов и продуктов, путем анализа степени их производственной зрелости и оценивания факторов...
66907. ФУНКЦИИ ГОСУДАРСТВА 149.5 KB
  Научное познание государства любого исторического типа обязательно предполагает рассмотрение его функций представляющих собой важнейшие качественные характеристики и ориентиры не только собственно государства как особой организации публичной власти но и общества в целом.
66908. ДЕСМУРГИЯ 81.5 KB
  Под повязкой понимается один из способов закрепления перевязочного материала обычная повязка поддержание постоянного давления на определенную часть тела давящая повязка удержание части тела в неподвижном положении иммобилизирующая повязка лечение вытяжением.
66909. ПРИКЛАДНА КРИПТОЛОГІЯ 305.66 KB
  Основою побудування сучасних систем обробки інформації є застосування інформаційних систем(ІС) та інформаційно – телекомунікаційних систем(ІТС). ІС це система, в якій реалізується технологія обробки інформації за допомогою технічних і програмних засобів.
66910. Особливості розвитку української культури в литовсько-руську та польсько-литовську добу (XIV-перша половина XVII ст.) 277 KB
  Більша частина українських земель знаходиласяу складі Литовської та Польської держав. Разом із тим ХІV – ХVІ ст. – це час подальшого формування українського народу, активізація його боротьби проти польсько-литовського панування, поява на історичній арені України такого самобутнього...
66911. Целевой маркетинг 33.83 KB
  Сегментация по географическому признаку разделение рынка на разные географические объекты страны регионы города. Сегментирование по демографическому признаку разделение рынка на потребительские группы на основе демографических переменных: пол возраст размер семьи этапы жизненного цикла семьи род занятий образование уровень дохода...
66912. Статичні члени класу та їх оголошення 48 KB
  Оголошуючи член-даних класу статичним, ми тим самим повідомляємо компілятор про те, що, незалежно від того, скільки обєктів цього класу буде створено, існує тільки одна копія цього static-члена. Іншими словами, static-член розділяється між всіма обєктами класу.