10659

Численное интегрирование методом Симпсона

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 10 Численное интегрирование методом Симпсона. Цель работы. Методом Симсона вычислить определенный интеграл от сложной функции или от функции заданной в виде таблицы опытных данных; выполнить оценку полученного результата. Теоретичес

Русский

2013-03-30

193.5 KB

110 чел.

Лабораторная  работа  10

Численное интегрирование методом Симпсона.

Цель работы. Методом Симсона вычислить определенный интеграл от сложной функции, или от функции, заданной в виде таблицы опытных данных;  выполнить оценку полученного результата.

Теоретические положения. Пусть требуется найти значение нтеграла                                                        (1)

для некоторой заданной на отрезке  функции  .

Поскольку в общем случае значения функций находятся лишь приближенно, использование точной формулы Ньютона-Лейбница приводит к приближен-ному результату, который может быть более эффективно получен с помощью какой-либо специальной приближенной формулы на основе значений      подинтегральной функции  .

Если в интеграл (1) вместо  подставить интерполяционный много-член Лагранжа    той или иной степени, то получим так называемые формулы Ньютона-Котеса. Полагая степень полинома  n=2, будем иметь  известную   формулу Симпсона (парабол):

         ,            (2)

где шаг ,  - количество точек разбиения отрезка ,  .

Чтобы обеспечить заданную точность вычисления интеграла  -, необходимо правильно выбрать шаг  . Согласно теории этот шаг находится на основе остаточного члена формулы Симпсона –

,                                       (3)

и определяется как:

,  где                                           (4)

 - четвертая производная от подинтегральной функции , вычисление которой встречает немалые трудности, даже с учетом использо-вания  пакета MathCad. Остаточный член  -   можно представить в виде, который позволяет упростить вычисление интеграла с заданной точностью

,                                                  (5)

где   - шаг разбиения отрезка  ,

      - интеграл, вычисленный при шаге  ,

    - интеграл, вычисленный при шаге  .

Если добиться, что

    ,                                                        (6)

то требуемая точность будет достигнута и процесс уточнения интеграла следует прекратить.

Порядок выполнения работы.  

-  записать коэффициент    (или   )  по формуле Фурье,

- погрешность вычислений  установить  ,

- принять за начальное значение  n=4:

а) вычислить  ,

б) сделать  в Excel  таблицу  ,   - Таблица 1,

в) вычислить по формуле (2) заданный интеграл - это будет ,

- уменьшить шаг вдвое, т.е. взять  n=8:

а) вычислить  ,

б) сделать  в Excel  таблицу  ,   - Таблица 2,

в) вычислить по формуле (2) заданный интеграл - это будет ,

г) подставить эти данные в формулу (5) и проверить условие (6),

- если оно не выполняется, то вновь уменьшить шаг вдвое, т.е. взять n=16:

а) вычислить  ,

б) сделать  в Excel  таблицу  ,  - Таблица 3,

в) вычислить по формуле (2) заданный интеграл - это  будет , в то    время как интеграл, вычисленный при  n=8  будем считать  как ,

г) опять подставляем данные в формулу (5) и проверяем условие (6),

- этот процесс продолжаем до тех пор, пока неравенство (6) не выполнится,

- все итоговые расчеты удобно оформить в виде таблицы 4:

        

         Таблица 4 (пример)

4

0,152037465

--

8

0,107661871

0,002958373

16

0,106389767

0,000084807

32

0,106320676

0,000004606

64

0,106316498

0,000000278

- Таблицы  1 – 4 вставить в отчет,

- вычислить точное значение тнтеграла с помощью  MathCad, приняв ,

- вычислить абсолютную и относительную погрешности,

- сделать выводы по работе.

 Варианты исходных данных. В качестве исходных данных для расчетов взять коэффициенты    или   ,  из РГР  № 2 “ Определение амплитуд и частот колебаний аппаратов химических технологий “.

         Пример расчета.   

  1.  Цель работы: вычислить интеграл от заданной функции методом Симпсона.
  2.  Исходные данные:

         , .   

  1.  Остаточный член формулы Симпсона R можно представить в виде, который позволяет упростить вычисление интеграла с заданной точностью:

   где    - шаг разбиения отрезка  Sh – интеграл вычисленный при шаге h  Sh/2 – интеграл вычисленный при шаге h/2.

  1.  Если добиться, что , то требуемая точность  будет достигнута и  процесс уточнения интеграла следует прекратить.
  2.   Для выполнения  этой задачи рекомендуется следующий алгоритм вычисления интеграла с точностью .

а).   Принимаем  n=4, находим  и создаем в Excel таблицу:

I

0

1

2

3

4

X

          0,00

0,25

0,50

0,75

1,00

Y

0,000000000

-0,176987727

-0,499998573

0,880710438

0,009555885

б).    Вычисляем заданный интеграл по формуле Симпсона

в).     Уменьшаем шаг в 2 раза, т.е. берем   n=8 ,  h=0.125

I

0

1

2

3

4

X

0

0,125

0,25

0,375

0,5

Y

0,000000000

-0,577281757

-0,176987727

-0,047628434

-0,499998573

I

5

6

7

8

X

0,625

0,75

0,875

1

Y

-0,33726056

0,880710438

1,503890935

0,009555885

г).      Подставляем Sh и Sh/2 в формулу и проверяем условие требуемой точности:

,  ,

д).     Так как условие не выполняется, то вновь уменьшаем шаг в 2 раза, т.е. берем   n=16,  h=0.0625

i

0

1

2

3

4

5

x

0

0,0625

0,125

0,1875

0,25

0,3125

y

0,000000000

-0,451199054

-0,577281757

-0,429169852

-0,176987727

-0,012284658

i

6

7

8

9

10

11

x

0,375

0,4375

0,5

0,5625

0,625

0,6875

Y

-0,047628434

-0,259470767

-0,499998573

-0,572659835

-0,337260555

0,203859266

I

12

13

14

15

16

X

0,75

0,8125

0,875

0,9375

1

Y

0,880710438

1,408779516

1,503890935

1,013711459

0,009555885

       Будем продолжать этот процесс, пока не выполнится условие  (6).

е).     Составим сводную таблицу всех итоговых расчетов.

4

0,152037465

--

8

0,107661871

0,002958373

16

0,106389767

0,000084807

32

0,106320676

0,000004606

64

0,106316498

0,000000278

  , следовательно условие заданной точности  

при   n=64  выполняется.

ж).     Проверим значение интеграла, вычисленное методом Симпсона, посчитав его теперь в Mathcad.

,

убедились, что результат соответствует заданной точности.

  1.  Выводы  по  работе:  Выполняются  студентами  самостоятельно.

PAGE  4


 

А также другие работы, которые могут Вас заинтересовать

5567. Учет и анализ финансовых результатов и использования прибыли на примере ОАО Воронежстрой-Холдинг 438.5 KB
  Развитие рыночных отношений требует осуществления новой финансовой политики, усиления и воздействия на ускорение социально-экономического развития России, рост эффективности производства и укрепления финансов государства. Важная роль в обес...
5568. Фильтрация сигналов на фоне помех 153.5 KB
  Фильтрация сигналов на фоне помех. Задачи и методы фильтрации Электрическим фильтром называется пассивный четырехполюсник пропускающий электрические сигналы некоторой полосы частот без существенного ослабления или с усилением, а колебания вне это...
5569. Анализ параметрических цепей 149.5 KB
  Анализ параметрических цепей Общие понятия о параметрических цепях Электрические системы, в которых хотя бы один из параметров (R, L или C) является переменным во времени, называется цепями с переменными параметрами, называется цепями с переменны...
5570. Анализ нелинейных цепей 297 KB
  Анализ нелинейных цепей 1. Общие понятия об элементах нелинейных цепей Цепи, которые изучались ранее, относятся к классу линейных цепей. Параметры элементов этих цепей. Параметры элементов этих цепей - сопротивлений, индуктивностей, емкостей - не за...
5571. Основы цифровой обработки сигналов 497 KB
  Основы цифровой обработки сигналов 1.Основные понятия Под цифровой обработкой сигналов (ЦОС) понимают операции над дискретными во времени величинами (отсчетами сигналов). Дискретную величину, поступающую на вход устройства ЦОС в n-ый момент времени ...
5572. Влияние сезонных условий на процессы изменения качества автомобилей 1.97 MB
  Влияние сезонных условий на процессы изменения качества автомобилей Изложены результаты исследований, целью которых является разработка совокупности теоретических положений, позволяющих адекватно интерпретировать и моделировать процессы изменения...
5573. Линии влияния в многопролетных стержневых системах 177.5 KB
  Линии влияния в многопролетных стержневых системах Принципы построения линий влияния для стержневых систем общи. В основе установления закона изменения внутреннего усилия при различных положениях единичной силы лежит метод сечений. Сформулируем осно...
5574. Применение теоремы об изменении количества движения к исследованию движения механической энергии 88 KB
  Применение теоремы об изменении количества движения к исследованию движения механической энергии. Механическая система состоит из трех тел 1, 2, 3 с массами соответственно. На тело 1 наложены две связи. Опора A препятствует перемещению тела по...
5575. Изучение свойств внимания 44 KB
  Изучение свойств внимания. Цель работы: Измерить и дать качественную характеристику основным свойствам внимания: концентрации, устойчивости, объему, переключению. Материалы. Методики для исследования внимания: Теппинг-тест Корректурная проба (буквен...