10661

Интегрирование дифференциальных уравнений первого порядка методом Эйлера

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 11. Интегрирование дифференциальных уравнений первого порядка методом Эйлера. Цель работы. Научиться решать дифференциальные уравнения первого порядка используя алгоритм Эйлера; сравнить численный результат с точным аналитическим выр...

Русский

2013-03-30

322 KB

6 чел.

Лабораторная  работа  11.

Интегрирование дифференциальных уравнений

первого порядка методом Эйлера.

Цель работы. Научиться решать дифференциальные уравнения первого порядка, используя алгоритм Эйлера; сравнить численный результат с точным аналитическим выражением.

 Теоретические положения.  Пусть задано уравнение

,                         (1)

с начальными условиями  . Значения функции в узлах  заменим сеточной функцией  .  Для простоты примем постоянный шаг  ,  - отрезок для поиска решения,  - количество точек деления отрезка.

Заменим производную конечно-разностным отношением

.                       (2)

Отсюда получаем алгоритм Эйлера:

.                    (3)

Зная значение функции в начальной точке  , можно последовательно найти значения функции во всех точках сетки. Результатом решения ДУ по форму-ле (3) является ломаная линия, проходящая через точки .

Порядок выполнения работы.  

- переписать исходные данные к работе:

    - дифференциальное уравнение,

    - начальные условия,

    - отрезок для поиска  решения,

     - точное решение.

- количество точек ломаной Эйлера  ,

- точность расчетов принять  равной  ,

- вычислить  в MathCad точки ломаной  Эйлера   по формуле (3), считая

   ,

- все данные расчетов занести в таблицу:

   -  номер шага,

    - дискретный аргумент,

     - решение ДУ методом Эйлера,  

     - точное решение.

- по данным таблицы построить графики   и  ,

- в точке   вычислить абсолютную и относительную погрешности

,    .

Варианты исходных данных.  Задано дифференциальное уравнение первого порядка   и  начальные условия  . Для проверки на интервале    его решения методом Эйлера - ,  приводится формула решения, полученного аналитическим  путем -   (из задачника).

Дифференциальное уравнение

Формула точного решения

Начальные

условия

Интервал

решения

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

         Пример расчета.  

  1.  Цель работы: проинтегрировать дифференциальное уравнение первого порядка методом Эйлера.

  1.  Исходные данные:

           - дифференциальное уравнение,

           - интервал для поиска решения,      

    - начальные условия,      

   - точное решение,

- точность расчетов,

 - количество точек графиков.

  1.   Алгоритм Эйлера:

                   ,

  1.  Обозначим:

- решение полученное методом Эйлера,

- точное решение, данное в условии задачи,

- дискретный аргумент.

  1.  Все расчеты выполним в  Mathcad  по программе:

  1.  Составим таблицу  

i

0

1,047197551

0,523598776

0,523598776

1

1,256637061

0,314159265

0,314159266

2

1,466076571

0,104719755

0,104719756

3

1,675516081

-0,104719754

-0,104719754

4

1,884955591

-0,314159264

-0,314159264

5

2,094395101

-0,523598774

-0,523598774

6

2,303834611

-0,733038284

-0,733038284

7

2,513274121

-0,942477794

-0,942477794

8

2,722713631

-1,151917304

-1,151917304

9

2,932153141

-1,361356814

-1,361356814

10

3,141592651

-1,570796324

-1,570796327

  1.  По данным таблицы строим графики:

8.Выводы по работе:  Выполняются  студентами  самостоятельно.


x

3

:=

y

p

6

:=

y1

y

tan

y

(

)

-

tan

x

(

)

*

(

)

2

×

p

×

30

+

:=

y2

asin

cos

x

(

)

(

)

:=

x1

x

2

p

×

30

+

:=

y1

0.039918945

=

y2

0.523598776

=

x1

1.256637061

=


 

А также другие работы, которые могут Вас заинтересовать

55177. СТРУКТУРА ЦИКЛ 108 KB
  В каждом варианте задания необходимо определить требуемые входные и выходные данные , для вычисления предложенных функций составить схемы алгоритмов и программы решения задач. Предусмотреть печать всех входных и выходных данных.
55178. Створення документу зі складним обрамленням за допомогою редактора Word 82.5 KB
  Мета: Формувати уміння і навички обрамлення окремих частин таблиці виділення заголовків об’єднання чарунок таблиці. Постановка загальної проблеми: Як при допомозі текстового редактора Word створювати таблиці із складним обрамленням І.
55180. ЦЕНОВАЯ ПОЛИТИКА ТУРИСТСКОГО ПРЕДПРИЯТИЯ 128.93 KB
  Цена и ценовая политика в комплексе маркетинга туристского предприятия. Методы ценообразования. Виды скидок в туризме. Ценовые стратегии туристского предприятия.
55181. Вставка в текстовий документм Word таблиці із складним обрамленням, списків та схем для створення накладних 67.5 KB
  Мета: Формувати уміння і навички вставки сітки таблиці для створення документів в яких текст розташований в декілька стовпчиків. Пересуваючись вздовж або поперек таблиці можна обстежити деяку групу комірок встановлювати курсор на будьяку комірку таблиці вносити в неї нову інформацію або редагувати існуючу.
55183. СБЫТОВАЯ ПОЛИТИКА ТУРИСТСКОГО ПРЕДПРИЯТИЯ 56.73 KB
  Канал сбыта (распространения) – совокупность организаций или отдельных лиц, которые принимают на себя или передают другому субъекту право собственности на конкурентный продукт или услугу на их пути от производителя к потребителю.
55185. Створення документів зі списками та схемами 856.5 KB
  Директор з маркетингу: група планування та маркетингу; група логістики; відділ маркетингу; відділ продажів. Комерційний директор: відділ приймання; відділ закупівель; обліковоопераційний відділ; відділ сертифікації; обліковий відділ; склад. Виконавчий директор: відділ кадрів; IT-служба.