10664

Решение задач нелинейного программирования

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 14 Решение задач нелинейного программирования. Цель работы. Научиться решать одну из задач оптимизации: исходя из конкретной ситуации составить совокупность линейных или нелинейных ограничений в виде системы неравенств ...

Русский

2013-03-30

325.5 KB

46 чел.

  1.  

Лабораторная  работа  14

Решение задач нелинейного программирования.

Цель работы.  Научиться решать одну из задач оптимизации: исходя из конкретной ситуации, составить совокупность линейных или нелинейных ограничений в виде системы неравенств, а также функцию цели. Для этой функции найти оптимальное решение.

Теоретические положения. Если записать зависимость критерия    от варьируемых параметров  , а также записать определенные ограничения на допустимую область их изменения, то мы придем к некото-рой математической модели задачи оптимизации:  

требуется найти неотрицательные значения   переменных , которые удовлетворяют системе уравнений и неравенств

                          (1)

и доставляют данной функции

                                              (2)

наименьшее (или наибольшее) значение.

Здесь:

 -   называется  целевой функцией,

- условия  (1) – ограничениями,

- каждый набор переменных, удовлетворяющий (1), называ-ется допустимым решением,

- допустимое решение, минимизирующее или максимизирующее функцию  , называется оптимальным.  

Если хотя бы одна из  функций:   - нелинейна, то имеем задачу нелинейного программирования.  Общий метод решения таких задач отсут-ствует, поэтому рассмотрим несколько  примеров, в которых комбинация: ограничения - целевая функция может быть линейные – нелинейная или наоборот. Для простоты иллюстрации будем использовать  наборы допус-тимых решений, состоящие  только из двух переменных  .

Порядок выполнения работы.   

- переписать выражение для целевой функции и неравенства, характеризу-ющие область допустимых решений задачи,

- построить область допустимых решений данной задачи,

- построить линию для начального положения целевой функции,

- на рисунке найти точки, соответствующие минимуму и максимуму целевой функции, а также точки, близкие к ним (если таковые имеются),

- вычислить аналитически или, исходя из геометрических соображений, ко-ординаты точки, соответствующей минимуму целевой функции  ,

- подставить  координаты в выражение для целевой функции и найти  ,

- аналогичным образом вычислить координаты точки, соответствующей максимуму целевой функции ,

- подставить  координаты в выражение для целевой функции и найти  ,

- если имеются точки, близкие к минимуму или максимуму – найти их координаты,  вычислить   и сравнить с  и с  ,

- сделать выводы по работе.

Варианты исходных данных: Заданы целевая функция и ограничения:     

 

1.           Найти  min  и  max  целевой функции

при ограничениях:

2.           Найти  min  и  max  целевой функции

при ограничениях:

    

3.            Найти  min  и  max  целевой функции

при ограничениях:

                             

4.           Найти  min  и  max  целевой функции

при ограничениях:

    

5.          Найти  min  и  max  целевой функции

при ограничениях:

                                     

6.           Найти  min  и  max  целевой функции

при ограничениях:

                                      

7.           Найти  min  и  max  целевой функции

при ограничениях:

                              

8.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

             

9.          Найти  min  и  max  целевой функции

при ограничениях:

                              

10.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

11.            Найти  min  и  max  целевой функции

при ограничениях:

                                   

12.           Найти  min  и  max  целевой функции

при ограничениях:

                                      

13.          Найти  min  и  max  целевой функции

при ограничениях:

                              

14.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

15.           Найти  min  и  max  целевой функции

при ограничениях:

                              

16.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

17.           Найти  min  и  max  целевой функции

при ограничениях:

                              

18.           Найти  min  и  max  целевой функции

при ограничениях:

                                      

19.            Найти  min  и  max  целевой функции

при ограничениях:

                                   

                                 

20.           Найти  min  и  max  целевой функции

при ограничениях:

                                       

21.            Найти  min  и  max  целевой функции

при ограничениях:

                             

22.           Найти  min  и  max  целевой функции

при ограничениях:

                                       

23.          Найти  min  и  max  целевой функции

при ограничениях:

                              

24.           Найти  min  и  max  целевой функции

при ограничениях:

                                      

25.            Найти  min  и  max  целевой функции

при ограничениях:

                                  

                                    

26.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

27.          Найти  min  и  max  целевой функции

при ограничениях:

                              

28.           Найти  min  и  max  целевой функции

при ограничениях:

                                       

29.           Найти  min  и  max  целевой функции

при ограничениях:

                              

30.           Найти  min  и  max  целевой функции

при ограничениях:

                                     

Пример расчета.   

  1.  Цель работы: решить данную задачу оптимизации методом нелиней-ного программирования.

  1.  Исходные данные:

- целевая функция            z=(x1-1.9)2+(x2+2.9)2   

    - ограничения

3. Найти  min  и  max  целевой функции в области допустимых решений данной задачи.

   4. Решение задачи:

а) строим область допустимых решений и целевую функцию:

          

 б) из построения видно, что точкой максимума целевой функции является точка    С (5,250;0,000),

подставляем ее координаты в уравнение целевой функции и считаем:

 

в) точкой минимума целевой функции является точка пересечения окружности с 1-ой прямой. Ищем ее координаты:

выражаем x2

,    подставляем в уравнение окружности и получаем:

г) известно, что экстремум функции достигается при условии, что частная производная от этой целевой функции = 0

и тогда

  д)  подставляем координаты точки пересечения в уравнение целевой функции и считаем:

 

  1.  Выводы:  Выполняются  студентами  самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

48884. История делопроизводства в дореволюционной России. Учебное пособие 403 KB
  Определение документа интегрирующее все его аспекты дал советский документовед К. Вид это понятие употребляемое для обозначения группы документов одного наименования например: указ один вид грамота другой акт третий. При этом автором служебных документов являются учреждения. Формуляры различных документов складывались на протяжении веков.
48886. ИСПОЛЬЗОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ПРИ ПРОГНОЗИРОВАНИИ ИСХОДА ВЫБОРОВ В ПРЕЗИДЕНТЫ 1.6 MB
  Нейронные сети возникли из исследований в области искусственного интеллекта а именно из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки моделируя низкоуровневую структуру мозга. С практической точки зрения методика принятия решения обученной нейросети проста на входе задаются некоторые числовые данные и нейросеть ищет похожие в исторических данных на которых она обучалась. Другая существенная особенность нейронных сетей состоит в том что зависимость между входом и выходом находится в процессе...
48888. Использование нейронных сетей при анализе выбора супружеской пары 3.21 MB
  Искусственные нейронные сети прочно вошли в нашу жизнь и сейчас широко используются при решении самых разных задач и активно применяются там где обычные алгоритмические решения неэффективны или даже невозможны. цель моей работы: показать можно ли использовать нейронные сети и эффективно ли их применение в рамках отношений между людьми. Нейронные сети и нейрокомпьютеры это одно из направлений компьютерной индустрии в основе которого лежит идея создания искусственных интеллектуальных устройств по образу и подобию человеческого...
48889. Использование нейронных сетей при планировании пола будущего ребенка 365.5 KB
  Практическое применение нейронных сетей при планировании пола будущего ребенка Хотелось бы отметить что предметом исследования моей курсовой работы является прогнозирование пола будущего ребенка с помощью нейросетей. Выбор данной темы был обусловлен тем что в данной области применение методов искусственного интеллекта не распространено в свою очередь тема планирования пола ребенка всегда была и остается актуальной т.
48890. Использование эффекта Доплера для измерения физических величин 1.18 MB
  Неинвазивное измерение скорости потока Сущность явления Доплера Если источник волн движется относительно среды то расстояние между гребнями волн длина волны зависит от скорости и направления движения. Скорости υИ и υН всегда измеряются относительно воздуха или другой среды в которой распространяются звуковые волны. Трактовка проблемы существенно зависит от того можем ли мы говорить лишь об относительном движении источника и приемника по отношению друг к другу или имеет смысл говорить о скорости возмущения относительно среды т.
48891. Разрешат ли родители своему ребенку завести домашнее животное 3.5 MB
  Интеллект это способность мозга решать интеллектуальные задачи путем приобретения запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. При этом существенно то что формирование модели внешней среды происходит в процессе обучения на опыте и адаптации к разнообразным обстоятельствам. Одной из наиболее интересных интеллектуальных задач также имеющей огромное прикладное значение является задача обучения распознавания образов и ситуаций. Персептрон или любая...