1074

Работа с матрицами в MathCAD

Лабораторная работа

Информатика, кибернетика и программирование

Выполняя данную работу, мы научились вычислять матрицы, изучили панель операций с матрицами и векторами, научились вводить матрицы с разными размерами, вычисляли транспонированную матрицу. Так же научились вычислять определители матриц и проверили правильность решения матриц.

Русский

2013-01-06

595.5 KB

92 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования

«Поволжский государственный технологический университет»

(ФГБОУ ВПО «ПГТУ»)

Отчет по лабораторной работе №3

по дисциплине

«Теория систем и системный анализ»

25 вариант

                                                                        Выполнила: студентка

                                                                        1-го  курса  ЭФ   группы

                                                                    ПИб-11 Уртьева И.Ю.

                                                                    Проверила :

                                                                    Пайзерова Ф. А.

Йошкар-Ола

2012 г.

ЦЕЛЬ ЛАБОРАТОРНОЙ РАБОТЫ.

Научиться работать с матрицами в MathCAD.

Лабораторное задание.

3.1. Ввести заданные в столбце 1 матрицы (п.4.3.2).

3.2.  Транспонировать заданные матрицы (матрицы из столбцов 1 и 2) (п.9.1.1)

3.3.  Найти линейную комбинацию матриц (столбец 1) (п.9.1.2, 9.1.3)

3.4.  Найти произведение каждой матрицы на транспонированную и транспонированной матрицы на саму матрицу (матрицы из столбцов 1 и 2). (п.9.1.2)

3.5. Рассчитать определитель для  всех полученных матриц. (п.9.1.5)

3.6. Решить систему линейных уравнений по вашему варианту (см. лабораторную работу 7 (решение систем уравнений, первый столбец таблицы)) матричным способом,  и проверить, используя матрицы,  правильность решения (см. приложение к этой лабораторной работе). Рассчитать модуль вектора правых частей и скалярное произведение этого вектора на самого себя.


Задания:

1)3*А-2*В, А= , В=.

2) f(x)=2*-3*+5, A=

3)

                       

3.1. Ввести заданные в столбце 1 матрицы.

                    3*А-2*В, А= , В=

Для вычисления этого примера нужно на панели инструментов вызвать калькулятор , а так же нужно вызвать Панель инструментов  «Вектор и матрица» и выбрать нужные значения:

                   

             

                              

 Для начала нужно присвоить значение А и В : «А :=», «В:=» , а для того, чтобы задать матрицу , нужно кликнуть мышкой по

И после этого появится окошко, в котором нужно ввести количество строк и столбцов

После нажимаем ОК и появится  

в которую вбиваем значения и получим результат:

3.2.  ТРАНСПОНИРОВАТЬ ЗАДАННЫЕ МАТРИЦЫ

Чтобы транспонировать матрицы, необходимо вызвать на панели инструментов «Матрица»     и выбрать   .

И результат получится:

3.3.  НАЙТИ ЛИНЕЙНУЮ КОМБИНАЦИЮ МАТРИЦ

Чтобы найти линейную комбинацию, нужно аналогичным же образом  вбивать значения , представленные выше в пунктах и в результате получим :

3.4.  НАЙТИ ПРОИЗВЕДЕНИЕ КАЖДОЙ МАТРИЦЫ НА ТРАНСПОНИРОВАННУЮ И ТРАНСПОНИРОВАННОЙ МАТРИЦЫ НА САМУ МАТРИЦУ.

Чтобы найти линейную комбинацию, нужно аналогичным образом  вбивать значения , представленные выше в пунктах и в результате получится :

А для того, чтобы  найти значение функции  f(x)=2*-3*+5

нужно присвоить А «А:=» значения    , затем присвоить х значение А «х:=А» .

А  функцию  f(x)=2*-3*+5

нужно записать в виде :

И в результате получится:

3.5. РАССЧИТАТЬ ОПРЕДЕЛИТЕЛЬ ДЛЯ  ВСЕХ ПОЛУЧЕННЫХ МАТРИЦ

Чтобы найти значение определителя, нужно кликнуть мышкой по символу

и на экране выходит :

После этого нам  нужно кликнуть мышкой по символу:

И в экране появится:

Также вбиваем значения и в результате получим:

3.6. РЕШИТЬ СИСТЕМУ ЛИНЕЙНЫХ УРАВНЕНИЙ ПО ВАШЕМУ ВАРИАНТУ (СМ. ЛАБОРАТОРНУЮ РАБОТУ 7 (РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ, ПЕРВЫЙ СТОЛБЕЦ ТАБЛИЦЫ)) МАТРИЧНЫМ СПОСОБОМ,  И ПРОВЕРИТЬ, ИСПОЛЬЗУЯ МАТРИЦЫ,  ПРАВИЛЬНОСТЬ РЕШЕНИЯ (СМ. ПРИЛОЖЕНИЕ К ЭТОЙ ЛАБОРАТОРНОЙ РАБОТЕ). РАССЧИТАТЬ МОДУЛЬ ВЕКТОРА ПРАВЫХ ЧАСТЕЙ И СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ЭТОГО ВЕКТОРА НА САМОГО СЕБЯ.

Эту систему можно решить тремя способами:

  1.  Матричная форма записи.
  2.  Методом Крамера.
  3.  Методом Гаусса.

Матричная форма записи

В данной системе уравнений даны три неизвестные и стоящие перед ними коэффициенты. И эти коэффициенты нужно записать в виде:

А значения этих трех неизвестных:

Для того, чтобы найти значения трех неизвестных, нужно воспользоваться формулой: x:=

Чтобы достовериться правильно ли значения подсчитали, воспользуемся формулой:

Так же чтобы удостовериться, что нашли те же значения правильно, сделаем проверку, подставляя значения в формулу:

x:=Isolve(A,B)

и программа должна вывести одно и тоже значение

Результат работы программы :

МЕТОД КРАМЕРА

Чтобы решить систему уравнений методом Крамера, нужно вычислить их определители, заменяя столбцы:

После этого нужно найти отношение каждых этих определителей на определитель начальной матрицы. Этими действиями мы найдем значение неизвестных системы уравнений.

И в результате получим:

МЕТОД ГАУССА

Для того, чтобы решить систему методом Гаусса, нужно сперва ввести матрицу системы и матрицу - столбец  правых частей.

После этого нужно сформировать расширенную матрицу системы.

Для того, чтобы сформировать расширенную матрицу системы, нужно использовать функцию augment(A,b), которая формирует матрицу, добавляя к столбцам матрицы системы A справа столбец правых частей b(в приведенном  документе расширенной матрице системы присвоено имя Ar). Функция rref(Ar) выполняет элементарные операции со строками расширенной матрицы системы Ar-приводит ее к ступенчатому виду с единичной матрицей в первых столбцах, т.е. выполняет прямой и обратный ходы гауссова исключения, Ag – имя результата (ступенчатой формы матрицы Ar). Функция submatrix(Ag,0,2,3,3), выделяя последний столбец матрицы Ag, формирует столбец решения системы. Проверка (вычисление Aпозволяет убедиться в правильности решения. Результат работы в программе:

ВЫВОД.

Выполняя данную работу, мы научились вычислять матрицы, изучили панель операций с матрицами и векторами, научились вводить матрицы с разными размерами, вычисляли транспонированную матрицу. Так же научились вычислять определители матриц и проверили правильность решения матриц.

Кроме того, мы научились решать разными методами системы линейных алгебраических уравнений. Мы решили их с помощью матричной формы записи, методом Крамера и Гаусса, которые проверили на правильность решения.


 

А также другие работы, которые могут Вас заинтересовать

36207. Деревянные конструкции. Принцип фахверковой стены. Вопросы ее утепления и облицовки 51 KB
  Фахверковые дома имеют жёсткий несущий каркас из : стоек вертикальных элементов балок горизонтальных элементов раскосов диагональных элементов которые и являются основной отличительной особенностью конструкции фахверка. В основном применяются конструкции позволяющие создать большую площадь остекления что зрительно создает эффект растворения границы интерьера сближая человека с природой. В основном несущие элементы конструкции фахверка покрывают защитным составом позволяющим сохранять древесину сухой трудновоспламеняемой и...
36208. КАМЕННЫЕ КОНСТРУКЦИИ ОДНОСЛОЙНЫЕ И МНОГОСЛОЙНЫЕ КОНСТРУКЦИИ НЕСУЩИХ СТЕН 159 KB
  Стены основные элементы конструкции здания. Несущая стена является естественным продолжением и неотъемлемым элементом конструкции здания служит опорой для балок или бетонных плит потолочного перекрытия. Наружные стены могут быть однослойной или слоистой конструкции.
36209. Задачи дискретной оптимизации. Основные точные методы дискретной оптимизации: поиск с возвратом, динамическое программирование, метод ветвей и границ. Приближённые методы дискретной оптимизации: жадный алгоритм, метод локальных вариаций 126.5 KB
  Тогда в терминах ЦЧЛП задача о рюкзаке может быть сформулирована так: найти максимум линейной функции при ограничениях хj  0 . Найти кратчайший маршрут коммивояжера бродячего торговца начинающийся и заканчивающийся в заданном городе и проходящий через все города. Воспользовавшись им при k = n – 1 1 можно найти Q х0 – оптимальное значение критерия эффективности. Зная х1 можно найти – оптимальное управление на 2й стадии и т.
36210. Языки описания выбора. Процедуры выбора при критериальном описании: скалярно-оптимизационный механизм выбора, человеко-машинные процедуры, мажоритарные схемы 73.5 KB
  Процедуры выбора при критериальном описании: скалярнооптимизационный механизм выбора человекомашинные процедуры мажоритарные схемы. Как любая теория теория выбора начинается с языка описания. К настоящему времени сложилось три основных языка описания выбора: критериальный язык; язык бинарных отношений; язык функций выбора.
36211. Классы численных методов построения множеств неулучшаемых решений. Основные теоремы для поточечных методов и алгоритма последовательного выбора 31.5 KB
  Процедуры первой группы осуществляют поочередный поиск отдельных неулучшаемых точек как решений вспомогательных скалярных задач. В них на каждой итерации получается целое множество “неплохих†точек которое на последующих шагах постепенно улучшается. Генератор на каждой итерации порождает набор точек zk а ФВ осуществляет отбор в некотором смысле лучших из них: Генератор множеств точек zk Функция выбора С Для организации выбора необходимо произвести парные сравнения исходных вариантов и отбросить те из...
36212. Эффективные и слабо-эффективные решения. Поточечные методы поиска слабо-эффективных решений и оценок. Линейная свёртка, теорема Карлина. Логическая свёртка, теорема Гермейера. Геометрический смысл теорем Карлина и Гермейера 79.5 KB
  Поточечные методы поиска слабоэффективных решений и оценок. Решения или оценки называются эффективными слабоэффективными если они неулучшаемы по отношению Парето Слейтера. Поиск слабоэффективных решений или оценок поточечными методами базируется на основной теореме 2.
36213. Метод наименьших квадратов (МНК). Теорема Гаусса-Маркова. Анализ уравнения регрессии посредством коэффициента детерминации и остаточной дисперсии. МНК-прогноз 112.5 KB
  МНКпрогноз. Согласно методу наименьших квадратов МНК эти оценки находят из условия минимума функции Qb = где уi – наблюдаемое значение выходного параметра в iм эксперименте.1 МНКоценок и представляет прежде всего теоретический интерес.
36214. Понятие плана эксперимента. Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства 46 KB
  Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства. Одной из главных задач планирования экспериментов является выбор множества экспериментальных точек в некотором смысле оптимальных.
36215. Классификация математических моделей. Критерии качества моделей. Примеры моделей 66.5 KB
  Примеры моделей Суть моделирования состоит в замене исходного объекта упрощенной копией – математической моделью ММ и дальнейшем изучении модели с помощью вычислительнологических алгоритмов реализуемых на компьютерах. При исследовании любой системы методами математического моделирования возможно наличие нескольких альтернативных вариантов модели. Поэтому процесс построения наилучшего как правило компромиссного варианта модели достаточно сложен. Системный подход предполагает наличие следующих этапов создания модели.