1074

Работа с матрицами в MathCAD

Лабораторная работа

Информатика, кибернетика и программирование

Выполняя данную работу, мы научились вычислять матрицы, изучили панель операций с матрицами и векторами, научились вводить матрицы с разными размерами, вычисляли транспонированную матрицу. Так же научились вычислять определители матриц и проверили правильность решения матриц.

Русский

2013-01-06

595.5 KB

91 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования

«Поволжский государственный технологический университет»

(ФГБОУ ВПО «ПГТУ»)

Отчет по лабораторной работе №3

по дисциплине

«Теория систем и системный анализ»

25 вариант

                                                                        Выполнила: студентка

                                                                        1-го  курса  ЭФ   группы

                                                                    ПИб-11 Уртьева И.Ю.

                                                                    Проверила :

                                                                    Пайзерова Ф. А.

Йошкар-Ола

2012 г.

ЦЕЛЬ ЛАБОРАТОРНОЙ РАБОТЫ.

Научиться работать с матрицами в MathCAD.

Лабораторное задание.

3.1. Ввести заданные в столбце 1 матрицы (п.4.3.2).

3.2.  Транспонировать заданные матрицы (матрицы из столбцов 1 и 2) (п.9.1.1)

3.3.  Найти линейную комбинацию матриц (столбец 1) (п.9.1.2, 9.1.3)

3.4.  Найти произведение каждой матрицы на транспонированную и транспонированной матрицы на саму матрицу (матрицы из столбцов 1 и 2). (п.9.1.2)

3.5. Рассчитать определитель для  всех полученных матриц. (п.9.1.5)

3.6. Решить систему линейных уравнений по вашему варианту (см. лабораторную работу 7 (решение систем уравнений, первый столбец таблицы)) матричным способом,  и проверить, используя матрицы,  правильность решения (см. приложение к этой лабораторной работе). Рассчитать модуль вектора правых частей и скалярное произведение этого вектора на самого себя.


Задания:

1)3*А-2*В, А= , В=.

2) f(x)=2*-3*+5, A=

3)

                       

3.1. Ввести заданные в столбце 1 матрицы.

                    3*А-2*В, А= , В=

Для вычисления этого примера нужно на панели инструментов вызвать калькулятор , а так же нужно вызвать Панель инструментов  «Вектор и матрица» и выбрать нужные значения:

                   

             

                              

 Для начала нужно присвоить значение А и В : «А :=», «В:=» , а для того, чтобы задать матрицу , нужно кликнуть мышкой по

И после этого появится окошко, в котором нужно ввести количество строк и столбцов

После нажимаем ОК и появится  

в которую вбиваем значения и получим результат:

3.2.  ТРАНСПОНИРОВАТЬ ЗАДАННЫЕ МАТРИЦЫ

Чтобы транспонировать матрицы, необходимо вызвать на панели инструментов «Матрица»     и выбрать   .

И результат получится:

3.3.  НАЙТИ ЛИНЕЙНУЮ КОМБИНАЦИЮ МАТРИЦ

Чтобы найти линейную комбинацию, нужно аналогичным же образом  вбивать значения , представленные выше в пунктах и в результате получим :

3.4.  НАЙТИ ПРОИЗВЕДЕНИЕ КАЖДОЙ МАТРИЦЫ НА ТРАНСПОНИРОВАННУЮ И ТРАНСПОНИРОВАННОЙ МАТРИЦЫ НА САМУ МАТРИЦУ.

Чтобы найти линейную комбинацию, нужно аналогичным образом  вбивать значения , представленные выше в пунктах и в результате получится :

А для того, чтобы  найти значение функции  f(x)=2*-3*+5

нужно присвоить А «А:=» значения    , затем присвоить х значение А «х:=А» .

А  функцию  f(x)=2*-3*+5

нужно записать в виде :

И в результате получится:

3.5. РАССЧИТАТЬ ОПРЕДЕЛИТЕЛЬ ДЛЯ  ВСЕХ ПОЛУЧЕННЫХ МАТРИЦ

Чтобы найти значение определителя, нужно кликнуть мышкой по символу

и на экране выходит :

После этого нам  нужно кликнуть мышкой по символу:

И в экране появится:

Также вбиваем значения и в результате получим:

3.6. РЕШИТЬ СИСТЕМУ ЛИНЕЙНЫХ УРАВНЕНИЙ ПО ВАШЕМУ ВАРИАНТУ (СМ. ЛАБОРАТОРНУЮ РАБОТУ 7 (РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ, ПЕРВЫЙ СТОЛБЕЦ ТАБЛИЦЫ)) МАТРИЧНЫМ СПОСОБОМ,  И ПРОВЕРИТЬ, ИСПОЛЬЗУЯ МАТРИЦЫ,  ПРАВИЛЬНОСТЬ РЕШЕНИЯ (СМ. ПРИЛОЖЕНИЕ К ЭТОЙ ЛАБОРАТОРНОЙ РАБОТЕ). РАССЧИТАТЬ МОДУЛЬ ВЕКТОРА ПРАВЫХ ЧАСТЕЙ И СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ЭТОГО ВЕКТОРА НА САМОГО СЕБЯ.

Эту систему можно решить тремя способами:

  1.  Матричная форма записи.
  2.  Методом Крамера.
  3.  Методом Гаусса.

Матричная форма записи

В данной системе уравнений даны три неизвестные и стоящие перед ними коэффициенты. И эти коэффициенты нужно записать в виде:

А значения этих трех неизвестных:

Для того, чтобы найти значения трех неизвестных, нужно воспользоваться формулой: x:=

Чтобы достовериться правильно ли значения подсчитали, воспользуемся формулой:

Так же чтобы удостовериться, что нашли те же значения правильно, сделаем проверку, подставляя значения в формулу:

x:=Isolve(A,B)

и программа должна вывести одно и тоже значение

Результат работы программы :

МЕТОД КРАМЕРА

Чтобы решить систему уравнений методом Крамера, нужно вычислить их определители, заменяя столбцы:

После этого нужно найти отношение каждых этих определителей на определитель начальной матрицы. Этими действиями мы найдем значение неизвестных системы уравнений.

И в результате получим:

МЕТОД ГАУССА

Для того, чтобы решить систему методом Гаусса, нужно сперва ввести матрицу системы и матрицу - столбец  правых частей.

После этого нужно сформировать расширенную матрицу системы.

Для того, чтобы сформировать расширенную матрицу системы, нужно использовать функцию augment(A,b), которая формирует матрицу, добавляя к столбцам матрицы системы A справа столбец правых частей b(в приведенном  документе расширенной матрице системы присвоено имя Ar). Функция rref(Ar) выполняет элементарные операции со строками расширенной матрицы системы Ar-приводит ее к ступенчатому виду с единичной матрицей в первых столбцах, т.е. выполняет прямой и обратный ходы гауссова исключения, Ag – имя результата (ступенчатой формы матрицы Ar). Функция submatrix(Ag,0,2,3,3), выделяя последний столбец матрицы Ag, формирует столбец решения системы. Проверка (вычисление Aпозволяет убедиться в правильности решения. Результат работы в программе:

ВЫВОД.

Выполняя данную работу, мы научились вычислять матрицы, изучили панель операций с матрицами и векторами, научились вводить матрицы с разными размерами, вычисляли транспонированную матрицу. Так же научились вычислять определители матриц и проверили правильность решения матриц.

Кроме того, мы научились решать разными методами системы линейных алгебраических уравнений. Мы решили их с помощью матричной формы записи, методом Крамера и Гаусса, которые проверили на правильность решения.


 

А также другие работы, которые могут Вас заинтересовать

28557. Несимметричные системы шифрования и их построение 23.7 KB
  Эти системы характеризуются тем что для шифрования и для расшифрования используются разные ключи связанные между собой некоторой зависимостью. Один из ключей например ключ шифрования может быть сделан общедоступным и в этом случае проблема получения общего секретного ключа для связи отпадает. Поскольку в большинстве случаев один ключ из пары делается общедоступным такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями...
28558. Новое направление в криптографии, постулаты У. Диффи и М. Хеллмана 23.14 KB
  Это означает что если А является примитивным корнем простого числа Q тогда числа A mod Q A2 mod AQ1 mod Q являются различными и состоят из целых от 1 до Q – 1 с некоторыми перестановками. В этом случае для любого целого B Q и примитивного корня A простого числа Q можно найти единственную экспоненту Х такую что Y =AX mod Q где 0≤ X ≤ Q1. Экспонента X называется дискретным логарифмом или индексом Y по основанию A mod Q. Общеизвестные элементы Q Простое число A A Q и A является примитивным корнем Q Создание...
28559. Описание системы с открытыми ключами 14.42 KB
  Альтернативным вариантом может быть обработка регистрации системой имеющей древовидную структуру: ЦО выдает сертификаты местным представителям которые в дальнейшем действуют в качестве посредников в процессе регистрации пользователя на более низких уровнях иерархии. Сертификаты могут распространяться ЦО пользователями или использоваться в иерархической системе. Поэтому если сертификаты хранятся у пользователей а не выдаются каждый раз ЦО при их использовании ЦО должен время от времени публиковать списки аннулированных сертификатов....
28560. Электро́нная по́дпись (ЭП) 17.3 KB
  Кроме этого использование электронной подписи позволяет осуществить: Контроль целостности передаваемого документа: при любом случайном или преднамеренном изменении документа подпись станет недействительной потому что вычислена она на основании исходного состояния документа и соответствует лишь ему. Защиту от изменений подделки документа: гарантия выявления подделки при контроле целостности делает подделывание нецелесообразным в большинстве случаев. Доказательное подтверждение авторства документа: Так как создать корректную подпись...
28561. Открытое шифрование и электронная подпись 14.08 KB
  Пользователь А вырабатывает цифровую подпись предназначенного для пользователя В сообщения М с помощью следующего преобразования: SIGm=EebnbEdanaM При этом он использует: свое секретное преобразование; открытое преобразование Eebnb пользователя В. Edana Затем он передает пользователю В пару{MSIGM}. Пользователь В может верифицировать это подписанное сообщение сначала при помощи своего секретного преобразованияс целью получения Edbnb EdanaM=EdbnbSIGM=EdbnbEebnbEdanaM и затем открытого Eeana пользователя А для...
28562. Основные результаты статьи Диффи и Хеллмана 24.93 KB
  Первая публикация данного алгоритма открытого ключа появилась в статье Диффи и Хеллмана в которой вводились основные понятия криптографии с открытым ключом и в общих чертах упоминался алгоритм обмена ключа ДиффиХеллмана. Сам алгоритм ДиффиХеллмана может применяться только для обмена ключами. Безопасность обмена ключа в алгоритме ДиффиХеллмана вытекает из того факта что хотя относительно легко вычислить экспоненты по модулю простого числа очень трудно вычислить дискретные логарифмы.
28563. Однонаправленные функции, построение однонаправленных функций с секретами 14.43 KB
  Обозначим через QF сложность вычисления значения Fx для произвольного xX через QF1 сложность вычисления по произвольному yY значения x такого что Fx=y сложность вычисления понимается в стандартном смысле теории сложности. Сложность вычисления F такова что алгоритм ее вычисления реализуем на современной технике и выдает ответ за приемлемое время 2. Сложность вычисления F1 такова что алгоритм ее вычисления либо не реализуем на современной технике либо не дает ответ за приемлемое время. Что считать приемлемым...
28564. Система RSA. Использование алгоритма Евклида для расчета секретного ключа d 23.69 KB
  Подобный блок может быть интерпретирован как число из диапазона 0; 2i1;; для каждого такого числа назовем его mi вычисляется выражение ci=mie mod n 3.По теорема Эйлера если число n представимо в виде двух простых чисел p и q то для любого x имеет место равенство Xp1q1 mod n =1 Для дешифрования RSAсообщений воспользуемся этой формулой. Возведем обе ее части в степень y: Xyp1q1 mod n = 1 y=1 Теперь умножим обе ее части на x : xyp1q11 mod n =...