10779

Исследование влияния режимов сварки плавлением на температурное поле

Лабораторная работа

Информатика, кибернетика и программирование

Исследование влияния режимов сварки плавлением на температурное поле индекс Т1 по дисциплине Теория сварочных процессов Цель работы: приобрести навыки исследования влияния режимов сварки на распределения температур в свариваемом изделии с использованием перс

Русский

2013-04-01

628.5 KB

6 чел.

«Исследование влияния режимов сварки плавлением на температурное поле» (индекс Т1)

по дисциплине «Теория сварочных процессов»

Цель работы: приобрести навыки исследования влияния режимов сварки на распределения температур в свариваемом изделии с использованием персональной ЭВМ.

Исходные данные: сталь 30ХГСА, = 0,6 см, ручная дуговая сварка плавящимся электродом при выбранных режимах сварки: νсв=0,4 см/с; Qн =1800 Вт; Iсв=100А; Uд=24 В; =0,75, качестве теплоотвода выбрана отдача в воздух.

Программа работы.

  1.  Записать тип свариваемого материала, его толщину и ориентировочные размеры сварочной ванны, предложенные преподавателем, сталь 30ХГСА, δ = 0,6 см.
  2.  Ознакомиться с порядком проведения работы на ЭВМ.
  3.  Исходя из свойств свариваемого материала, предложить способ его сварки плавлением и ориентировочные режимы сварки: тепловую мощность источника, его КПД, ток сварки, напряжение дуги, скорость сварки, выбрать условия теплоотдачи.
  4.  Оценить правильность выбранных параметров режима сварки, например, ориентировочно по размеру области, нагретой выше температуры плавления свариваемого материала.
  5.  Для оценки размеров шва принять:

ширину сварочной ванны Вш = [2…3]δ = [1,2…1,8] см;

наибольшую длину сварочной ванны Lш= [3…4]δ = [1,8…2,4] см.

При этом следует учитывать и теплофизические свойства свариваемого материала.

Корректируя режимы сварки и теплоотдачи (Vсв·q·а) проанализировать графики зависимостей: Т = (х) при у = const; Т = (у) при х = const.

По полученным и откорректированным зависимостям построить изотерму Т = Tпл заданного сплава, а также определить размеры зоны, нагретой выше указанной преподавателем температуры.

Рис.1. Исходные данные

Графики, полученные с помощью ЭВМ, характеризующие температурное поле для свариваемых материалов, способа сварки и выбранных параметров режимов сварки.

После ввода исходных данных, выбираем строку «Распределение по оси Х, при Y=const».

Рис. 1. График изменения температуры по оси X при Y=const

По полученному графику определяем ориентировочно крайние точки длины сварочной ванны Х1=-1,65 см и Х6=0,2 см. После определения крайних точек находим ориентировочную длину сварочной ванны по формуле Lш16=1,85 см. Найденная длина сварочной ванны входит в интервал Lш= [3…4]δ = [1,8…2,4] см.

Уточняем значение крайних точек длины сварочной ванны Х1 и Х6.

В начале скорректируем точку Х6. Возьмем три значения  одно ориентировочное значение X6 является ранее найденное, и построим график «Распределение по оси Y, при X=const» (Рис.2).

Рис. 2. График изменения температуры по оси Y, при X=const

Из графика видно, что кривая, которая совпадает с линией температурой плавления, является скорректированной Х6 уточн. = 0,2 см.

Аналогично уточняем точку Х1. Скорректируем точку Х1. Возьмем три значения  одно ориентировочное значение X1 является ранее найденное, и построим график «Распределение по оси Y, при X=const» (Рис.3).

Рис. 3. График изменения температуры по оси Y, при X=const

Из графика видно, что кривая, которая совпадает с линией температурой плавления, является скорректированной Х1 уточн. = -1,65 см.

После того как скорректировали крайние точки Х1 и Х6, нужно определить длину сварочной ванны Lш= Х1 + Х6=1,85 см, которая должна входить в интервал Lш= [3…4]δ = [1,8…2,4] см.

Для построения сварочной ванны необходимо определить значения Y, для этого возьмём 6 значений Х:  Х1= -1,65 см; X2= - 1,3 см; X3= - 1 см; X4= - 0,6 см; X5= 0; X6= 0,2 см и построим зависимость «Распределение по оси Y, при X=const» (рис.4).

Рис. 4. График изменения температуры по оси Y, при X=const

Из графика определяем значения Y1; Y 2; Y 3; Y 4; Y 5 и Y 6. В данном случае Y1 и Y6 = 0; Y 2 =0,35 см; Y 3 =0,4 см; Y 4 =0,46 см; Y 5 = 0,33см.

Для определения ширины сварочной ванны необходимо определить Ymax, для этого из имеющихся  значений Y выбираем наибольшее значение:  см и скорректируем его, взяв 3 значения,  см и строим график «Распределение по оси Y, при X=const» (рис.5).

Рис. 5. График изменения температуры по оси Y, при X=const

Из графика видно, что зависимость, которая совпадает с линией температуры плавления, является скорректированной. Это означает, что точка Ymax = 0,46 см уточнена.

Определяем ширину сварочной ванны по формуле Вш=2· Ymax= 2·0,46 =0,92 см, она не входит в интервал Вш = [2…3]δ = [1,2…1,8] см, следовательно, режимы сварки подобраны не верно.

Рекомендации:

Для того, чтобы выполнить качественное сварное соединение нужно увеличить мощность нагрева или уменьшить скорость сварки.

Изотерма (Т=Тпл).

По найденным значениям X и Y строим график «Изотерма сварочной ванны» (рис.6).

Рис. 6. Изотерма сварочной ванны

Вывод. В данной работе было исследовано влияние режимов сварки на распределение температур в свариваемом изделии с использованием ЭВМ. Для стали 30ХГСА, = 0,6 см, производилась ручная дуговая сварка плавящимся электродом при выбранных режимах сварки: νсв=0,4 см/с; Qн =1800 Вт; Iсв=100А; Uд=24 В; =0,75. В качестве теплоотвода выбрана отдача в воздух. Получили Lш=1,85 см Є [1,8…2,4] см и Bш=0,92 см  [1,2…1,8] см. По длине  Lш =1,85 см сварочная ванна входит в заданный интервал, следовательно, режимы сварки подобраны верно, а по ширине Bш=0,92 см сварочная ванна не входит в заданный интервал, следовательно режимы сварки выбраны не верно. Для того, чтобы выполнить качественное сварное соединение следует увеличить мощность нагрева  Qн,  либо уменьшить скорость сварки Vсв. Сварочная ванна строится не из начала координат, так как источник тепла линейный, движется медленно и теплом впереди источника пренебречь нельзя.


 

А также другие работы, которые могут Вас заинтересовать

19946. Комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления 329.83 KB
  Рассмотреть комплекс испытательных средств для исследования ползучести и состава газообразных продуктов деления, взаимосвязи его систем с облучательными устройствами и испытуемыми образцами. Обратить внимание на унификацию узлов установок, их объединение в облучательное устройство в зависимости от поставленных задач. Представить схему измерений комплекса и его элементы, параметры при испытании топливных композиций. Познакомить слушателей с газовым стендом, спектрометрическим комплексом и электроосадителем.
19947. Технология производства образцов диоксида урана двух партий 141.84 KB
  Изучались образцы диоксида урана двух технологий. Один тип образцов (тип с) по традиционной для реакторов ВВЭР технологии. Другой (тип f) изготовлен во Франции по технологии DCI и исследовался в соответствии с межгосударственной программой. Такие образцы, обладая повышенной пластичностью, предназначены для твэлов реакторов, способных работать в режимах покрытия пиковых нагрузок в электросетях.
19948. Качественные представления о двухстадийном диффузионном переносе ГПД. Обзор физических моделей и их сопоставление 47.3 KB
  Обосновать необходимость разработки двухстадийной диффузионной модели миграции ГПД для объяснения полученных экспериментальных результатов. Представить краткий обзор моделей двухстадийного переноса. Рассмотреть систему диффуравнений, условия однозначности и решение стационарной задачи.
19949. Частные случаи решения задачи и их сопоставление с экспериментальными результатами 41.7 KB
  Рассмотреть частные случаи решения задачи и сопоставить их с экспериментальными результатами. Обосновать дополнительные гипотезы о связях между параметрами переноса и необходимость их введения при решении задачи по восстановлению параметров по экспериментальным данным. Представить методику определения энергий активации и предэкпоненциальных членов коэффициентов диффузии.
19950. Связи между параметрами переноса и влияние на них дополнительных гипотез 57.09 KB
  Рассмотреть связи между параметрами переноса и влияние на них дополнительных гипотез. Представить методику определения предэкпонентных членов коэффициентов диффузии. Обосновать желание использовать дополнительные экспериментальные материалы по выходу ГПД в низкотемпературной области. Предложить модель для описания выхода ГПД при низкой температуре. Поставить и решить соответствующую задачу. Сопоставить расчет с экспериментом.
19951. Предположение о равенстве зернограничных параметров переноса в низкотемпературной и высокотемпературной области для образца с (Топливо ВВЭР) 93.93 KB
  Ввести предположение о равенстве зернограничных параметров переноса в низкотемпературной и высокотемпературной области для образца с (Топливо ВВЭР). Рассмотреть связи (аналитическая и графическая форма) между параметрами переноса и влияние на них указанного выше предположения. Представить численные значения параметров переноса и погрешности их восстановления. Сопоставить полученные результаты с данными других авторов.
19952. Результаты экспериментальных исследований влияния деформации ползучести на выход ГПД 59.44 KB
  Познакомить слушателей с результатами экспериментальных исследований влияния деформации ползучести на выход ГПД. Предложить диффузионно-конвективную модель для описания выхода ГПД при наличии пластической деформации. Поставить и решить стационарную задачу. Сопоставить аналитическое решение с экспериментом.
19953. Современный этап развития ядерной энергетики. Реакторы на тепловых и быстрых нейтронах 87.44 KB
  Конкретные пути решения задач, поставленных Президентом, представлены в «Стратегии развития ядерной энергетики России до середины XXI века», принятой Минатомом России в 2000-м году и одобренной Правительством РФ. В последующие годы были разработаны и приняты к исполнению ряд конкретных программ по направлениям. Некоторые из них включают разделы связанные непосредственно с решением проблем экологии и выводом АЭС из эксплуатации, эти задачи обеспечиваются значительной финансовой поддержкой.
19954. Элементы активной зоны ядерного реактора и реакторные испытания 30.76 KB
  Снижение затрат в процессе разработки твэлов удается достигнуть при использовании расчетных программ определения их работоспособности. Использование в программах расчета феноменологических характеристик материалов требует экспериментального исследования последних в режимах, близких к режимам эксплуатации материалов в твэлах. Знание этих характеристик особенно важно для разработчиков твэлов.