10806

Тепловые поля. Уравнение теплопроводности в твердых телах

Домашняя работа

Физика

Тепловые поля. Уравнение теплопроводности в твердых телах. Теплопроводность представляет собой процесс распространения энергии между частицами тела находящимися друг с другом в соприкосновении и имеющими различные температуры. Рассмотрим нагрев какоголибо одноро...

Русский

2013-04-02

90.12 KB

8 чел.

Тепловые поля. Уравнение теплопроводности в твердых телах.

Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного тела. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от точек с более высокой температурой к точкам с более низкой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры T как в пространстве, так и во времени:

,

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.

Рассмотрим две близкие изотермические поверхности с температурами T1 и T2 (рис. 1). T1 < T2.

Рис. 1.

Перемещаясь из какой либо точки А, можно обнаружить, что интенсивность изменения температуры по различным направлениям неодинакова. Если перемещаться по изотермической поверхности, то изменения температуры не обнаружим. Если же перемещаться вдоль какого-либо направления А1, А2, А3, то наблюдаем изменение температуры. Наибольшая разность температур на единицу длины будет в направлении нормали к изотермической поверхности(А2). Предел отношения изменения температуры к расстоянию между изотермами , когда стремится к нулю, называют градиентом температуры: .

- первый закон Фурье.

«» – величина направлена от низких температур к высоким,

- коэффициент теплопроводности,

- плотность потока энергии.

 .

  - тепловое сопротивление.

- толщина отрезка, через который идет тепловой поток.

  1.  Вывод уравнения теплопроводности (второй закон Фурье).

Рис. 2.

T1>T2

-  мощность тепла, протекающего через площадку в единицу времени.

- все количество тепла, которое через всю замкнутую поверхность вытекло из объема наружу за время .

,

,

,   

- количество тепла, которое вытекает из объема.

- плотность источников тепла.

- количество источников тепла в единице объема.

- количество тепла, которое производится источниками тепла, внутри объема за время от до .

- удельная теплоемкость.

- количество тепла, которое осталось внутри за счет, которого увеличивается температура тела.

- количество тепла, которой будет затрачено на нагрев элемента объема .

 - уравнение равновесия.

,

- скорость изменения температуры.

- уравнение теплопроводности.

Если , то отсутствуют источники тепла внутри исследуемого объема.

- второй закон Фурье.

- коэффициент температуропроводности.

При двухмерном пространстве (x, y) – процессы в тонких пленках:

.

При одномерном пространстве (x) – длинный стержень:


 

А также другие работы, которые могут Вас заинтересовать

20702. Гамування 75.04 KB
  Відкрите повідомлення MYNAMEІSARTEM Зашифруемо повідомлення Ключ k=i36mod 26 MYNAMEISARTEM 1 2 3 4 5 лат. Зашифроване повідомлення Шифрування Ci=tigimod N 16 8 4 2 1 k=i36 1 2 3 4 5 21 0 1 1 1 0 7 1 0 1 1 0 16 0 0 0 1 0 20 1 0 1 1 0 15 0 1 0 1 0 16 0 0 0 1 0 14 1 0 0 1 0 11 0 0 0 0 0 15 0 1 0 1 0 15 0 1 0 1 0 8 1 0 1 1 1 9 1 1 1 0 1 17 0 0 1 0 1 11 0 1 1 1 1 Висновки: В даній лабораторній роботі було розглянуто принципи гамування створено гаму і зашифровано за допомогою неї повідомлення.
20703. Шифри заміни 14.03 KB
  Ключ k=i27mod 33; i позиція букви у вхідному алфавіті k позиція букви у вихідному алфавіті Вхідний алфавіт: а б в г ґ д е є ж з и і ї й к л м н о п р с т у ф х ц ч ш щ ь ю я Відкрите повідомлення: Морозов Зашифроване повідомлення: Єіліціи 2. Ключ 0 1 2 3 4 5 0 ж р ш в щ г 1 о у м х ф і 2 ч а п л к з 3 д ц ь ю н ґ 4 ї и я б т с 5 е є й Відкрите повідомлення: Морозов Зашифроване повідомлення: 12100110251003 Висновки: Шифри заміни почали використовувати ще до н.е але попри те вони є популярними і на даний...
20704. Шифри перестановки 19.62 KB
  Ключ Сонечко 5 4 3 1 6 2 4 С о н е ч к о 1 2 4 4 3 5 6 м е н і т р и н а д ц я т и й м и н а л о я п а с я г н я т а з а с е л о м Виписуємо у порядку зростання цифр кожен стовбець :мнйяял еампто тяаяа ндиаам іцнсз ртлгс иионе 2 Побудова шкали рознесення і по ній шкалу набору для шифрування з подвійною перестановкою Ключ: Сонечко веселе с о н е ч к о 5 4 3 1 6 2 4 В 3 М Я Т А С л О Е 7 Е Ц И П Я Е М С 21 Н Д Й Я Г С е 7 І А М О Н А л 16 т Н И Л Я З е 7 р И н А т А Маршрут запитуваннязчитування Змінюємо рядки у відповідності зростання цифр е...
20705. Стандарт шифрування даних DES 70.76 KB
  Data Encryption Standard це симетричний алгоритм шифрування даних стандарт шифрування прийнятий урядом США із 1976 до кінця 1990х з часом набув міжнародного застосування. DES дав поштовх сучасним уявленням про блочні алгоритми шифрування та криптоаналіз. Вхідні дані MYNAMEISARTEM Шифрування з використанням випадкового ключа Результат шифрування даних ТЭ1oЋ HЎ т ПqАgy Результати розшифрування L .
20706. Гамування з зворотнім зв’язком 111.8 KB
  1КІ08 Морозов Артем Вінниця 2012 Вхідні дані My Name is Artem Ключ ч7є'V B1{XKСтЌuЭ0UБlЋоJј Шифрування простою заміною Гамування Зашифроване повідомлення г ЎвжЃЫjґЎqkіп'gИ Гамування з зворотнім звязком зворотний зв'язок не залежить від відкритого і зашифрованого тексту. Вона в цьому випадку відбувається за гамою з виходу алгоритму блочного шифрування У цьому режимі алгоритм блочного шифрування використовується для організації процесу поточного зашифрування так само як і у вищеперелічених режимах гамування.
20708. Экстремумы и точки перегиба 99 KB
  Определение: Если то называется точкой строгого локального минимума. Определение: Если то называется точкой локального максимума. Определение: Если то называется точкой строгого локального максимума.
20709. Первообразная функция и неопределенный интеграл 82 KB
  Опр: Функция называется первообразной для функции на промежутке если . Если первообразная для функции на и с произвольная постоянная то функция также является первообразной для . Если первообразная для функции на и первообразная для функции на то найдется с: . Вывод: Таким образом множество всех первообразных для на представимо в виде Опр: Множество всех первообразных функции на наз.
20710. Определенный интеграл и его свойства 157 KB
  Если постоянна на то она интегрируема и .Если и интегрируемы на то также интегрируема на и . Если интегрируема на и то также интегрируема на и . Если и совпадают на всюду за исключением может быть конечного числа точек и интегрируема на то также интегрируема на 5.