1081

Процесс расширения пара в турбинной ступени

Лекция

Энергетика

Основные уравнения и формулы, используемые для расчета движения водяного пара в проточной части турбинных ступеней. Конструкция турбинной ступени осевого типа и процессы преобразования энергии в ней. Тепловая диаграмма процесса расширения в турбинной ступени. Степень реактивности турбинной ступени.

Русский

2013-01-06

370 KB

202 чел.

Лекция № 4. Процесс расширения пара в турбинной ступени

4.1. Основные уравнения и формулы, используемые для расчета движения водяного пара в проточной части турбинных ступеней

В практике расчетов проточной части паровых турбин зачастую применяют уравнения газовой динамики для одномерного движения сжимаемой среды. При этом делается предположение о постоянстве значений давления, температуры, плотности и скорости в поперечном сечении рассматриваемого течения. Простейшим и широко используемым в решении многих инженерных и технических задач является случай одномерного установившегося течения с постоянной энтропией. В основе этих решений лежит применение системы уравнений неразрывности, количества движения и энергии, а также уравнения состояния для изоэнтропийного течения газа

                                                                  ,                                              (4.1)

где р, Па и v, м3/кг – соответственно, давление и удельный объем рабочей среды, хрv - показатель изоэнтропы, значение которого в расчетах перегретого водяного пара можно принимать равным хпп=1,3, а для сухого насыщенного – хнас=1,135.

Уравнение неразрывности одномерного движения при отсутствии массообмена с внешней средой (dG/G=0) выражается формулами массового G, кг/с и объемного Q, м3 расходов:                           

                                             G=сF=cF/v;    Q=GvF,                                              (4.2)

где с, м/с – скорость движения среды в рассматриваемом сечении канала, F, м2 – площадь поперечного сечения канала. Так, для каналов турбинных решеток используется выражение Gvt=сtF, где =G/Gt - коэффициент расхода, учитывающий различие между действительным G и теоретическим Gt значениями расхода водяного пара через канал (индекс «t» определяет теоретические значения скорости с и удельного объема v водяного пара при его изоэнтропийном процессе расширения).

Уравнение сохранения энергии для совершенного (идеального) газа при введении параметров торможения () и энтальпии  представляется в различных формах:

                 .       (4.3)

В (4.3) энтальпия h определяется по статическим значениям параметров р и Т.

С использованием скорости звука а (скорости распространения слабых возмущений в упругой среде) и критической скорости а (скорости потока, равной местной скорости звука) запись уравнения сохранения энергии следующая:

                                                                                                (4.4)

где                                         (4.5-4.6)

Значение газовой постоянной для перегретого пара по модели совершенного газа допускается принимать равным R=464 кДж/(кгК).  

Формула массового расхода с использованием функции расхода q приобретает вид:

                                                                                                       (4.7)

где для перегретого пара значение коэффициента А=0,0311(кгК/Дж)0,5, - коэффициент расхода, F – площадь поперечного сечения канала,  - давление и температура заторможенного потока на входе в канал. Следует помнить, что при относительном давлении =р/р0 меньшем или равном его критического значения (для перегретого водяного пара =0,5457) в канале реализуется критический расход среды G, который является максимальным для заданного значения давления р0 на входе в канал. При значение функции расхода q=1 и тогда по формуле (4.7) определяется значение G.

При рассмотрении процессов в турбинных ступенях для оценки режимов движения водяного пара используется число Маха М=с/а. Дозвуковые режимы течения определяются значениями М1, критический режим – М=1, а сверхзвуковые - М1.

4.2. Конструкция турбинной ступени осевого типа и процессы преобразования энергии в ней

Процессы преобразования тепловой энергии водяного пара в механическую работу вращающегося ротора паровой турбины осуществляется в ее турбинных ступенях. Ступень осевого типа (рис. 4.1) состоит из неподвижной диафрагмы 1 с кольцевой решеткой сопловых лопаток 2 и вращающегося диска 5 с решеткой рабочих лопаток 4. Профили соответствующих лопаток и межлопаточные каналы решеток показаны на развертке цилиндрического сечения по среднему диаметру dср ступени. Диафрагма устанавливается в расточке корпуса или обоймы 3, а диск является элементом ротора 6. Уплотнение 7 кольцевой щели между диафрагмой и поверхностью ротора называют диафрагменным. В свою очередь уплотнение 8 периферийного зазора над рабочей решеткой называют надбандажным.

В сопловых каналах при расширении водяного пара от давления р0 до давления р1 тепловая энергия преобразуется в кинетическую, в результате чего за сопловой решеткой среда приобретает скорость с1 (абсолютная скорость растет от с0 до с1), направление которой по отношению к фронту решетки определяется углом 1 (рис. 4.2). В межлопаточных каналах рабочей решетки при повороте потока и дальнейшем расширении пара до давления р2 ее кинетическая энергия преобразуется в механическую. При обтекании рабочих лопаток с криволинейным профилем (при повороте потока в каналах) создается активная составляющая усилия Rакт, а при расширении водяного пара (за счет ускорения потока) – реактивная Rреак, которые формируют окружное усилие: .

Рис. 4.1. Конструкция турбинной ступени (а) и ее упрощенное представление (б)

1 – диафрагма; 2 – сопловая решетка; 3 – обойма; 4 – рабочая решетка; 5 – диск; 6 – фрагмент ротора;

7 – диафрагменное уплотнение; 8 – надбандажное уплотнение

Рис. 4.2. Проточная часть каналов решеток турбинных ступеней

Окружное усилие на соответствующем диаметре ступени формирует крутящий момент Мкр, который и  производит работу по преодолению сил сопротивления приводимой машины (ротора электрического генератора). Рабочая решетка вращается с окружной скоростью u=dn, зависящей от частоты вращения ротора n,  с-1. Поэтому рабочая среда на входе в нее перемещается с относительной скоростью w1, вектор которой определяется на основе входного треугольника скоростей:  (рис. 4.3). Угол между векторами относительной и окружной скоростями обозначают 1. Этим углом определяется направление входных кромок рабочих лопаток. На выходе из каналов рабочей решетки угол 2 относительной скорости w2 определяется формой профиля рабочих лопаток и их установкой относительно ротора турбины. Абсолютная скорость с2 находится на основе выходного треугольника скоростей:  Угол вектора скорости с2 по отношению к фронту рабочей решетки обозначают 2. Обычно входной и выходной треугольники скоростей совмещают в их вершинах (рис. 4.3) и в таком виде они отражают кинематику процесса расширения водяного пара в проточной части турбинной ступени и служат основой для расчета ее геометрических и аэродинамических характеристик. При этом углы 2 и 2 отсчитывают по часовой стрелке.

Рис. 4.3. Треугольники скоростей для турбинной ступени осевого типа:

входной треугольник:  С1абсолютная скорость водяного пара на выходе из сопловой решетки;

         W1 относительная скорость входа потока в рабочую решетку;

                                              U окружная составляющая скорости (U=dn);

выходной треугольник: С2абсолютная скорость водяного пара на выходе из рабочей решетки;

            W2 относительная скорость выхода потока из рабочей решетки

4.3. Тепловая диаграмма процесса расширения в турбинной ступени 

Процессы расширения водяного пара в сопловой и рабочей решетках, а также для турбинной ступени, представлены тепловой диаграммой в h-s координатах на рис. 4.4. Состояние пара перед ступенью по параметрам торможения  - определяется энтальпией  (рис. 4.4,а). В свою очередь, значения статического давления р0 и температуры t0, позволяют определить теплосодержание среды энтальпией h0. При расширении водяного пара до давления р1 (линия 0-1t) теплоперепад в условиях изоэнтропийного течения называют располагаемой энергией сопловой решетки ступени. Она равна сумме кинетической энергии на выходе из сопловых каналов 0,5с1t2 в условиях изоэнтропийного расширения пара и кинетической энергии на входе в них 0,5с02. На основе уравнения сохранения 0,5с02+h0=0,5c1t2+h1t теоретическое значение скорости истечения пара из сопловых каналов определяется выражением:

                                                                                     (4.8)

Действительная скорость из-за потерь энергии в сопловой решетке определяется выражением с1=с1t, где коэффициент скорости  является оценкой коэффициента потерь сопловой решетки     

                                                                              (4.9)

Потери энергии Нс в сопловой решетке определяют необратимость процесса расширения в ней и соответствующее повышение энтальпии в реальном процессе расширения (линия 0-1 на рис. 4.4,а) до значения h1=h1t+Нс. В первом приближении коэффициент скорости для сопловой решетки допускается определять по выражению           

                                                                                                   (4.10)

где b1 – хорда профиля сопловой лопатки (наименьшее расстояние между ее входной и выходной кромками), l1 – высота сопловой решетки. Тогда

Рис. 4.4. Процессы расширения водяного пара в сопловой решетке (а), рабочей решетке (б),

для турбинной ступени (в) и фрагмент процесса за ступенью с учетом степени использования энергии с выходной скоростью (г)

Теоретический (изоэнтропийный) процесс расширения водяного пара в рабочей решетке ступени до давления р2 представлен на рис. 4.4,б линией 1-2t. Разность энтальпий h1-h2t=Hop называют располагаемым теплоперепадом рабочей решетки, а  уравнение энергии для нее в относительном движении имеет вид: h1+0,5w12=h2+0,5w22 (при условии равенства средних диаметров входного и выходного сечений рабочей решетки). В правой части этого уравнения отсутствует составляющая, характеризующая отводимую от рабочей решетки ступени механическую работу посредством диска к ротору турбины. Следует понимать и помнить, что эта работа, формируемая силой взаимодействия между лопаткой и потоком в координатах движущейся рабочей решетки ступени равна нулю, так как точка приложения этой силы не перемещается по отношению к наблюдателю, условно вращающемуся вместе с решеткой. Тогда теоретическая скорость в относительном движении на выходе из каналов рабочей решетки

                                                                         (4.11)

Действительная скорость с учетом коэффициента скорости для рабочей решетки равна w2=w2t. Как и для сопловой коэффициент потерь рабочей решетки

                                                    ,                                (4.12)

где - располагаемая энергия рабочей решетки, определяемая по параметрам торможения среды на входе в относительном движении (по давлению ). Потери энергии в каналах рабочей решетки , где в первом приближении коэффициент скорости допускается определять по выражению

                                                          =0,96-0,014b2/l2.                                                 (4.13)

Тогда для реального процесса расширения (линия 1-2 на рис. 4.4,б) энтальпия водяного пара в выходном сечении рабочей решетки h2=h2t+Hр. Разность энтальпий h0-h2t0 называют располагаемым теплоперепадом ступени по статическим параметрам, а теплоперепад, включающий кинетическую энергию потока на входе в ступень 0,5с02, располагаемым по параметрам торможения на входе в ступень:  рис. 4.4,в). Сумма располагаемых теплоперепадов сопловой и рабочей решеток называется располагаемой энергией ступени: . Эта энергия выражает работу, которую теоретически можно получить от 1 кг водяного пара в турбинной ступени.

На выходе из рабочей решетки поток водяного пара обладает кинетической энергией Нвс=0,5с22, определяемой абсолютной скоростью с2. В практике величину Нвс называют потерей энергии с выходной скоростью. В зависимости от степени использования Нвс в последующей ступени соответствующий процесс в h,s-диаграмме изображается или изобарным, или изоэнтропийным, или совмещенным (рис. 4.4,г). Если рабочая среда после ступени попадает в относительно емкую камеру проточной части турбины (например, за последними ступенями цилиндров турбины), то вся энергия с выходной скоростью расходуется на повышение температуры вследствие изобарного торможения среды. Такой процесс оценивается значением коэффициента использования энергии выходной скорости вс=0, а располагаемая энергия ступени в этом случае

                                                       .                                      (4.14)

Для промежуточной ступени турбины энергия выходной скорости используется в последующей ступени и определяет рост ее располагаемой энергии (0вс1). Тогда, например, при вс=1 для рассматриваемой ступени . На рис. 4.4,г приведено изображение процесса для случая, когда значение коэффициента вс1. При этом доля (1-вс)Нвс кинетической энергии с выходной скоростью теряется полностью, а другая часть всНвс используется в последующей ступени для совершения механической работы. Эта часть для нее составляет энергию входной скорости 0,5с02.

Из рассмотренного процесса расширения рабочей среды в проточной части турбинной ступени (рис. 4.4,в) следует выражение для удельной (для 1 кг пара) работы ступени Lu. Удельная работа на рабочих лопатках

                                                                                   (4.15)

4.4. Степень реактивности турбинной ступени

Отношение располагаемого теплоперепада Н к сумме располагаемых теплоперепадов сопловой и рабочей решеток называют степенью реактивности  ступени:                              

                                                 .                                              (4.16)

Чем выше степень реактивности ступени, тем больше ускоряется поток в рабочей решетке и, следовательно, относительная скорость w2 увеличивается по сравнению с w1. Ступень с =0  называют чисто активной. В этой ступени отсутствует расширение потока в рабочей решетке, т.е. давления р12, а процесс преобразования кинетической энергии среды в механическую работу осуществляется только за счет поворота потока в каналах рабочей решетки. Другими словами, создание подъемной силы здесь является единственным источником формирования окружного усилия Ru на рабочих лопатках и крутящего момента Мкр на диске ротора. Профили сопловых и рабочих лопаток такой ступени существенно отличаются друг от друга. Как правило, чисто активные ступени не используются в паровых турбинах. Обычно турбинные ступени имеют некоторую положительную реактивность для обеспечения конфузорности течения в каналах рабочей решетки, что позволяет снизить потери энергии в ней.

В ступенях с 0 кроме активной составляющей окружного усилия Rакт формируется и его реактивная составляющая Rреак (за счет расширения пара в рабочей решетке, когда р2р1). К активному типу относят также ступени с 0,2-0,25. Для ступеней, в которых водяной пар подводится не по всей длине окружности сопловой решетки, а по ее части (парциальный подвод пара), выбирают значения =0,02-0,12.

Турбинные ступени с =0,4-0,6 называют реактивными. В чисто реактивной ступени (=0,5) характер обтекания сопловых и рабочих лопаток практически одинаков, а сами профили по своей форме подобны и зачастую имеют одинаковые размеры. 

4.5. Расчет треугольников скоростей

Методика расчета треугольников скоростей (рис. 4.5) для решеток турбинных ступеней основывается на приведенных ранее выражениях расчета абсолютной с1t (4.8) и относительной w2t (4.11) скоростей, а также формулах расчета косоугольных треугольников.

Рис. 4.5. Треугольники скоростей для турбинной ступени активного типа

После оценки значения скорости с1, расчета окружной скорости u=dn, выбора угла 1, вычисляется относительная скорость w1 на входе в рабочую решетку по формуле

                                                   .                                          (4.17)

       Угол 1 определяется по формуле

                                                         .                                                (4.18)

      После оценки относительной скорости w2 и определения угла 2 (для активных ступеней 21-(2…40)) абсолютная скорость

                                                         ,                                (4.19)

а угол 2 находится по формуле      .                                           (4.20)

Лектор:    В.Ф. Касилов


 

А также другие работы, которые могут Вас заинтересовать

13392. CORELDRAW. ПРИМЕНЕНИЕ НАВЫКОВ 165.88 KB
  Лабораторная работа N 8 CORELDRAW. ПРИМЕНЕНИЕ НАВЫКОВ Порядок выполнения работы Выполнить построение изображения согласно индивидуальному заданию и предложенным рекомендациям. ВАРИАНТ 1. КОЛЛАЖ ТУПИК РЕКОМЕНДАЦИИ: Д
13393. Побудова плану котеджу 58 KB
  Лабораторна робота № 2 Тема: Побудова плану котеджу. Мета: закріпити практичні навички побудови плану методом напрямоквідстань та використання команд trim extend. Обладнання: ПК програмне забезпечення AutoCAD ...
13394. Створення шаблону в AutoCAD 12 83.5 KB
  Дисципліна ОКТБ ЛР № 9. Тема роботи: створення шаблону. Мета роботи: систематизувати теоретичні знання роботи з файлами повторити команди створення та редагування примітивів в програмі AutoCAD. Обладнання: ПК AutoCAD 12 Завдання для лабораторної роботи. Відкрит
13395. Робота з видовими екранами, компоновка аркуша 17.52 KB
  Дисципліна ОКТБ ЛР № 10. Тема роботи: робота з видовими екранами компоновка аркуша. Мета роботи: отримати практичні навички з видовими екранами. Обладнання: ПК AutoCAD 812 Теоретичні відомості. Видовим екраном називається ділянка графічного екрана де відображаєть...
13396. Створення об’єктів за допомогою інструмента «Коробка» 118.48 KB
  Лабораторна робота № 11. Тема: Створення об’єктів за допомогою інструмента Коробка. Мета: навчитись будувати твердотільні моделі заданого розміру та розташування в просторі за допомогою інструменту Коробка. Обладнання: AutoCAD 2008 AutoCAD 2012 ПК. Теоретичні відомості...
13397. Створення пустотілих об’єктів за допомогою інструмента «Віднімання» 43.62 KB
  Лабораторна робота № 12. Тема: Створення пустотілих об’єктів за допомогою інструмента Віднімання Мета: отримати практичні навички при виконанні операцій з твердотільними об’єктами Обладнання: AutoCAD 2008 AutoCAD 2012 ПК. Теоретичні відомості. Трехмерная компьютерна
13398. Створення плоских поверхонь по двох точках з використанням повороту КСК 13.41 KB
  Лабораторна робота № 13. Тема: Створення плоских поверхонь по двох точках з використанням повороту КСК. Мета: отримати практичні навички при виконанні операцій з твердотільними об’єктами Обладнання: AutoCAD 2008 AutoCAD 2012 ПК. Теоретичні відомості. Трехмерна
13399. Використання джерел світла і тіні 12.85 KB
  Лабораторна робота № 14. Тема: Використання джерел світла і тіні. Мета: навчитись використовувати різні джерела світла. Обладнання: AutoCAD 2008 AutoCAD 2012 ПК. Теоретичні відомості: при виконанні ЛР можна скористатись відеоуроком Lesson_10 який можна знайти на спільному ресурс
13400. Робота з командами AutoCAD. Побудова базових об’єктів 1.25 MB
  Тема: Робота з командами AutoCAD. Побудова базових об’єктів. Мета: Закріпити знання команди line Ознайомитися з командами offset fillet та особливостями їх використання засвоїти прийоми побудови нескладного плану кімнати. Обладнання: ПК пр...