1095

Математические модели и синтез цифровых нерекурсивных фильтров

Лекция

Математика и математический анализ

Общие характеристики цифровых фильтров. Математические модели цифровых нерекурсивных фильтров. Методика синтеза цифровых нерекурсивных фильтров. Алгоритм Ремеза для построения оптимального цифрового нерекурсивного фильтра.

Русский

2013-01-06

200.5 KB

100 чел.

Лекция № 7

Математические модели и синтез цифровых нерекурсивных фильтров

Рассматриваются следующие вопросы:

- общие характеристики цифровых фильтров;

- математические модели цифровых нерекурсивных фильтров;

- методика синтеза цифровых нерекурсивных фильтров;

- алгоритм Ремеза.

1.1. Общие характеристики цифровых фильтров

Для выделения частотных составляющих акустического дискретного сигнала применяются цифровые нерекурсивные и рекурсивные фильтры [5,6]. Выделим наиболее распространенные типы фильтров (фильтры с симметричной импульсной характеристикой), обрабатывающие частотный диапазон , где  - частота дискретизации:

- фильтр нижних частот (ФНЧ), выделяющий частоты ниже частоты среза , при этом полоса пропускания лежит в диапазоне , полоса непропускания - , полоса перехода между ними - ;

- фильтр высоких частот (ФВЧ), выделяющий выше частоты среза , при этом полоса пропускания лежит в диапазоне , полоса непропускания - , полоса перехода - ;

- полосовой фильтр (ФП), выделяющий частоты выше частоты среза  и ниже , при этом полоса пропускания лежит в диапазоне , полосы непропускания -  и , полосы    перехода -  и ;

- режекторный фильтр (ФР), выделяющий частоты ниже частоты среза  и выше , при этом полосы пропускания лежат в диапазоне  и , полоса непропускания - , полосы перехода -  и .

Максимальные пульсации в полосах пропускания и непропускания обозначаются через ,  соответственно. На рис.1.1 представлены передаточные функции четырех типов фильтров.

а) ФНЧ

                                               

в) ФП

                                             

г) ФР

Рис. 1.1. Передаточные функции цифровых фильтров

1.2. Математические модели цифровых нерекурсивных фильтров

Свойство нерекурсивный фильтр обозначает, что выходной сигнал фильтра зависит только от значения входного сигнала. Поэтому этот фильтр всегда устойчив. Нерекурсивный фильтр имеет импульсную характеристику конечной длины и поэтому еще называется фильтром с импульсной характеристикой конечной длины (или КИХ-фильтром).

Нерекурсивный фильтр можно представить в виде (1.1)

или   (1.1)

Нерекурсивные ФНЧ, ФВЧ, ФП, ФР выглядят следующим образом

(1.2)

(1.3)

(1.4)

(1.5)

где  M - порядок фильтра, .

Связь между передаточной функцией (частотной характеристикой)  и переходной функцией (импульсной характеристикой)  цифрового нерекурсивного фильтра, например нерекурсивного ФНЧ, может быть представлена в виде (1.6) или с помощью  z-преобразования в виде (1.7).

,   (1.6)

,   (1.7)

где  - шаг квантования,  - частота дискретизации.

Амплитудно-частотная характеристика (АЧХ) (1.8) и фазо-частотная характеристика (ФЧХ) (1.9) нерекурсивного фильтра выглядят в виде

(1.8)

. (1.9)

Если фильтр обрабатывает дискретный сигнал, временной интервал которого имеет конечную длину N, то возможно искажение спектра. Для уменьшения искажения спектра используем окна (весовые функции) . Например, для нерекурсивного ФНЧ

, . (1.10)

Приведем наиболее распространенные типы окон:

Треугольное окно (окно Бартлета)

,   для , (1.11)

Окно Ганна

,   для , (1.12)

Окно Хемминга

,   для , (1.13)

Окно Блэкмана

,   для , (1.14)

Окно Кайзера

,   для , (1.15)

где   - константа,  - функция Бесселя нулевого порядка,            N – четное

Обработку дискретного сигнала нерекурсивным фильтром, например ФНЧ (рис.1.2), можно представить в виде параметрической структуры, в которой используются коэффициенты фильтра , , и его порядок M .

Рис. 1.2. Структура фильтрации дискретного сигнала

В качестве входных переменных блока фильтрации выступают дискретный сигнал x(n), его  длина N, функция окна w(n), частота среза , частота дискретизации , а в качестве выходных – фильтрованный сигнал xН(n).

Цифровая фильтрация нерекурсивным фильтром требует  умножений.

1.3. Методика синтеза цифровых нерекурсивных фильтров

При синтезе нерекурсивных фильтров равенство (1.6), с учетом обратного преобразования Фурье, заменяется на (1.16), при этом считаем, что  является парной функцией, т.е. .

,  (1.16)

Если считать, что ФНЧ является идеальным, т.е.

при ,  при ,  

то на основании (1.16) получим

,   (1.17)

Спектр сигнала, обработанного ФВЧ, можно представить как разность исходного спектра и спектра, полученного в результате применения ФП, взятого с той же частотой среза, что и ФНЧ. Исходный спектр сигнала можно связать со всечастотным (или всепропускающим) фильтром, пропускающим все частоты. Коэффициенты всечастотного фильтра определены в виде

,    (1.18)

Исходя из этого

 (1.19)

Спектр сигнала, обработанного ФП, можно представить как разность спектров, полученных в результате применения двух ФНЧ, взятых с частотами среза  соответственно.

 (1.20)

Спектр сигнала, обработанного ФР, можно представить как разность исходного спектра и спектра, полученного в результате применения ФП, взятого с той же частотой среза, что и ФР. Исходя из (1.14), получим

или   (1.21)

1.4. Алгоритм Ремеза для построения оптимального цифрового нерекурсивного фильтра

Для цифрового нерекурсивного фильтра важную роль играет точность аппроксимации реализованной передаточной функции. Для оптимизации нерекурсивных фильтров наиболее распространен алгоритм Ремеза (рис.1.3). В основу алгоритма лежит представление задачи проектирования оптимального нерекурсивного фильтра с передаточной функцией  как задачи чебышевской аппроксимации, причем функция , аппроксимирующая передаточную функцию идеального фильтра , является суммой M-1 косинусоидальных функций.

,  (1.22)

В блоке 1.1 вычисляются частоты в полосах пропускания и непропускания , функции  - передаточная функция идеального фильтра,  - весовая функция ошибки аппроксимации, , ,  и  начальные экстремальные частоты .

Рис. 1.3. Алгоритм Ремеза

Таблица 8.1

Функции  и

Тип

ФНЧ

ФВЧ

ФП

ФР

Частоты ,  выбираются в полосах пропускания и непропускания, но не в полосах перехода. Для  ФНЧ, ФВЧ, ФП, ФР выбор  производится следующим образом

 (1.23)

 (1.24)

 (1.25)

(1.26)

где  ,  - шаг между выбираемыми частотами.

Начальные экстремальные частоты   выбираются из частот .

, , .  (1.27)

Функция  определена в виде

,  (1.28)

,   (1.29)

,   (1.30)

и  для приведены в табл. 8.1.

В блоке 1.2 вычисляется ошибка согласно (1.31)

,   (1.31)

В блоке 1.3 производится интерполяция функции

,      (1.32)

где ,

, .

В блоке 1.4 вычисляется взвешенная ошибка аппроксимации

,   (1.33)

В блоке 1.5 проверяется условие . Если оно выполняется – переход к блоку 1.8, иначе – к блоку 1.6.

В блоке 1.6 определяется количество локальных максимумов, обозначенное через R. В этом случае формулы (1.31)-(1.33) выполняются для частот , т.е. вычисляется количество  в которых .

В блоке 1.7 проверяется условие . Если оно выполняется – переход к блоку 1.8, иначе – к блоку 1.2.

В блоке 1.8 из R максимумов выбирается  M+1 наибольших и производится соответствующее изменение .

В блоке 1.9 на основании (8.1) вычисляются коэффициенты  с помощью обратного ДПФ

,  (1.34)

где , ,

В блоке 1.10 вычисляется импульсная характеристика для нерекурсивных фильтров с нечетным (1.35) и четным (1.36)  порядком M.

 (1.35)

 (1.36)


 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 


 

А также другие работы, которые могут Вас заинтересовать

20351. Ламповые высокочастотные генераторы с внешним возбуждением 362.5 KB
  Расчет генератора рассмотрим на типовом примере. Расчет анодной цепи генератора. Аналогичный расчет электрического режима работы ВЧ лампового генератора с внешним возбуждением можно провести по программе на языке Mathcad. Программа расчета электрического режима работы ВЧ лампового генератора Программа состоит из трех частей: ввода исходных данных DATE; расчета параметров генератора по анодной цепи ANODE; расчета параметров сеточной цепи генератора GRID.
20352. ТРАНЗИСТОРНЫЕ ГВВ 437.5 KB
  В биполярных транзисторах происходит перенос как основных носителей заряда в полупроводнике так и неосновных; в полевых только основных. Управление током прибора в биполярных транзисторах осуществляется за счет заряда неосновных носителей накапливаемых в базовой области; в полевых за счет действия электрического поля на поток носителей заряда движущихся в полупроводниковом канале причем поле направлено перпендикулярно этому потоку. Для увеличения мощности прибора в биполярных транзисторах используют многоэмиттерную структуру а в...
20353. Режимы работы транзисторно гВВ 270.5 KB
  Анализ работы и режимы работы транзисторного генератора с внешним возбуждением 9. Ключевой режим работы высокочастотного транзисторного генератора 9. Методика расчета ВЧ генератора с биполярным транзистором 9. Анализ работы и режимы работы транзисторного генератора с внешним возбуждением 9.
20354. СВЧ ТРАНЗИСТОРНЫЕ ГВВ 176 KB
  СВЧ ТРАНЗИСТОРНЫЕ ГВВ 12. Метод анализа линейных СВЧ устройств 12. Гибридноинтегральные СВЧ устройства и микрополосковые линии передачи 12. СВЧ транзисторный усилитель 12.
20355. АВТОГЕНЕРАТОРЫ И СТАБИЛИЗАЦИЯ ЧАСТОТЫ АВТОКОЛЕБАНИЙ 180.5 KB
  АВТОГЕНЕРАТОРЫ И СТАБИЛИЗАЦИЯ ЧАСТОТЫ АВТОКОЛЕБАНИЙ 14. Стабильность частоты автогенератора 14. Различительным признаком может являться не само значение частоты генерируемых колебаний а тип используемых электрических цепей. Способы стабилизации частоты автоколебаний: параметрическая с использованием обычных колебательных систем; кварцевая с использованием в качестве резонатора кристалла кварца; с диэлектрическим резонатором только в СВЧ диапазоне; молекулярная за счет индуцированного возбуждения атомов.
20356. СТАБИЛИЗАЦИЯ ДИСКРЕТНОГО МНОЖЕСТВА ЧАСТОТ 105 KB
  Автоматическая подстройка частоты 15. Частотная автоподстройка частоты 15. Фазовая автоподстройка частоты 15. Основными параметрами синтезатора являются: диапазон частот выходного сигнала количество N и шаг сетки частот fш долговременная и кратковременная нестабильность частоты уровень побочных составляющих в выходном сигнале и время перехода с одной частоты на другую.
20357. ДИОДНЫЕ СВЧ АВТОГЕНЕРАТОРЫ И УСИЛИТЕЛИ 98 KB
  ДИОДНЫЕ СВЧ АВТОГЕНЕРАТОРЫ И УСИЛИТЕЛИ 16. Физические основы работы генераторных СВЧ диодов 16. СВЧ диодные автогенераторы 16. СВЧ диодные генераторы с внешним возбуждением 16.
20358. ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ 47.5 KB
  ПОЛУПРОВОДНИКОВЫЕ УМНОЖИТЕЛИ ЧАСТОТЫ 17. Транзисторный умножитель частоты 17. Диодные умножители частоты 17. Назначение принцип действия и основные параметры Умножители частоты в структурной схеме радиопередатчика см.
20359. СУММИРОВАНИЕ МОЩНОСТЕЙ СИГНАЛОВ СВЧ ГЕНЕРАТОРОВ 95.5 KB
  СУММИРОВАНИЕ МОЩНОСТЕЙ СИГНАЛОВ СВЧ ГЕНЕРАТОРОВ 18. Способы суммирования мощностей сигналов 18. Суммирование мощностей сигналов с помощью многополюсной схемы 18. Суммирование мощностей сигналов с помощью ФАР 18.