10954

Формула полной вероятности

Лекция

Математика и математический анализ

Формула полной вероятности Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности. Пусть требуется определить вероятность некоторого события которое может произойти и...

Русский

2013-04-03

60.55 KB

27 чел.

Формула полной вероятности

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти или не произойти вместе с одним из событий: , образующих полную группу несовместных событий, т.е.  
. Будем эти события называть гипотезами. В этом случае сформулируем формулу (теорему) полной вероятности.

Теорема 1. Вероятность события  равна сумме произведения вероятности гипотеза на соответствующую условную вероятность этого события:

   (4.1)

Доказательство:  Вспомним операции над событиями,

. Так-так , то и , т. е. события  и  также несовместны. Тогда по теореме сложения вероятностей несовместных событий , т.е.  По теореме произведения вероятностей , откуда и следует формула (4.1). Теорема доказана.

ПРИМЕР 1:  Имеются три одинаковые урны:

  1.  В первой урне находятся два белых и один черный шар;
  2.  Во второй – три белых и один черный;
  3.  В третей – два белых и два черных.

Какова вероятность того, что некто подойдет и из произвольной урны вынимает белый шар?

РЕШЕНИЕ: Рассмотрим 3 гипотезы:

выбор первой  урны;

выбор второй урны;

выбор третей урны.

Событие  вынут белый шар. Т.к. по условию задачи гипотезы равновозможны, то . Если случайно подойти к первой урне, то вероятность вытащить из нее белый шар равна . Рассуждая аналогичным образом, вычислим условные вероятности события  при этих гипотезах соответственно  По формуле полной вероятности (4.1) окончательно получим:

ПРИМЕР 2:  Представим себе странника, идущего из некоторого пункта  и на разветвлении дорог выбирающего наугад один из возможных путей. Какова вероятность того, что странник из пункта  попадет в пункт ?

РЕШЕНИЕ: Как видно из рисунка, странник обязательно проходит через один из пунктов  и . Обозначим  гипотезы, состоящие в том, что путник при своем движении попадет из пункта  в пункт . Очевидно, что события  и  образуют полную группу событий. Эти гипотезы (события) равновероятны, т.к. по условию задачи, странник наугад выбирает один из путей  или . Тогда  Из пункта  в  можно прийти лишь по одному из трех равновероятных направлений. Так что условная вероятность достичь  при условии  равна . Аналогично рассуждая, получим:  Теперь по формуле полной вероятности:

Теорема гипотез (Формула Байеса)

Следствием теоремы умножения и формулы полной вероятности является теорема гипотез, или формула Байеса.

Сформулируем задачу.  Имеется полная группа несовместных событий (гипотез)  Вероятности этих гипотез известны и равны соответственно  Произведен опыт, в результате которого наблюдалось событие  Спрашивается, как следует изменить вероятности гипотез в связи с появлением этого события?

Фактически нам необходимо найти условную вероятность  для каждой гипотезы. Из теоремы умножения вероятностей (3.12) имеем:

Отсюда:

Окончательно получим:

  (4.2)

Выражая  с помощью формулы полной вероятности (4.1) получим формулу Байеса:

 (4.3)

ПРИМЕР 3:  Прибор может собираться из высококачественных деталей и из деталей обычного качества. 40 % приборов собирается из высококачественных деталей и их надежность за время  равно 95 %. Приборы из обычных деталей за время  имеют надежность 0.7. Прибор испытан и за время  работал безотказно. Какова вероятность того, что он собран из высококачественных деталей?

РЕШЕНИЕ: Возможны 2 гипотезы:

прибор собран из высококачественных деталей;

прибор собран из обычных деталей.

Вероятность этих гипотез до опыта:  

В результате опыта наблюдалось событие  прибор безотказно работал время . Условные вероятности этого события при гипотезах  и  соответственно равны:

По формуле Байеса находим условную вероятность гипотезы :

ПРИМЕР 4:  В урне содержится три шара белого и черного цвета, причем распределение числа шаров по цветам неизвестно. В результате испытания из урны извлекли один шар. а) Сформулировать гипотезы о содержимом урны до испытания и указать их вероятности. б) Найти вероятности гипотез после испытания, состоящего в извлечении из урны белого шара.

РЕШЕНИЕ:

а) До испытания выскажем четыре попарно несовместимых и равновероятных гипотезы:

в урне 3 белых и 0 черных шаров;

в урне 2 белых и 1 черных шаров;

в урне 1 белых и 2 черных шаров;

в урне 0 белых и 3 черных шаров.

б) Т.к. извлечен белый шар – событие , то условные вероятности этого события соответственно равны:   По формуле Байеса вычислим:



ПРИМЕР 5:  Три организации представили в налоговую инспекцию отчеты для выборочной проверки. Первая организация представила 15 отчетов, вторая – 10, третья – 25. Вероятности правильного оформления отчетов у этих организаций известны и соответственно равны: 0.9, 0.8, 0.85. Наугад был выбран один отчет, и он оказался правильным. Какова вероятность того, что этот отчет принадлежит второй организации?

РЕШЕНИЕ: Пусть  гипотезы, соответствующие выбору отчета у первой, второй и третьей организации. Вероятности гипотез равны:

По формуле полной вероятности вычислим вероятность события  выбран правильно оформленный отчет

По формуле Байеса вычислим исходную вероятность:

Формула Байеса (4.2) называется формулой апостериорной (обратной) вероятности, т.к. в ней используется информация о произошедшем событии. Это позволяет корректировать уровень имеющейся априорной вероятности по мере поступления сведений о рассматриваемых событиях на основе проводимых экспериментов. Поэтому байесовский подход получил широкое распространение в статистических исследованиях.