10958

Числовые характеристики одномерной случайной величины

Лекция

Математика и математический анализ

Числовые характеристики одномерной случайной величины Математическим ожиданием или средним значением случайной величины называется постоянная константа обозначаемая символом и определяемая равенством: 8.1 ПРИМЕР 1: Известны законы распределения СВ и чи

Русский

2013-04-03

163.51 KB

30 чел.

Числовые характеристики одномерной случайной величины

Математическим ожиданием или средним значением случайной величины называется постоянная (константа), обозначаемая символом  () и определяемая равенством:

 (8.1)

ПРИМЕР 1:  Известны законы распределения СВ  и  числа очков, выбиваемых первым и вторым стрелками:

0

1

2

3

4

5

6

7

8

9

10

0.15

0.11

0.04

0.05

0.04

0.10

0.10

0.04

0.05

0.12

0.20

0

1

2

3

4

5

6

7

8

9

10

0.01

0.03

0.05

0.09

0.11

0.24

0.21

0.10

0.10

0.04

0.02

Необходимо выяснить, какой из двух стрелков стреляет лучше.

РЕШЕНИЕ: Очевидно, что из двух стрелков лучше стреляет тот, кто в среднем выбивает большее число очков. Тогда по формуле (8.1) вычислим

Т.к. среднее число выбиваемых очков у двух стрелков одинаковое, то предпочтение нельзя отдать ни одному стрелку – они равносильны.

ПРИМЕР 2:  Непрерывная СВ  равномерно распределена на отрезке . Определим .

РЕШЕНИЕ: а) Прежде всего, определим плотность распределения. Из условия задачи известно:

Используем свойство:


Свойства математического ожидания

  1.  Математическое ожидание постоянной величины равно самой постоянной:

      (8.2)

  1.  Постоянный множитель можно выносить за знак математического ожидания:

    (8.3)

  1.  Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.е.

    (8.4)

  1.  Математическое ожидание произведения конечного числа независимых случайных величин равно произведению их математических ожиданий (покажем это свойство для двух СВ).

 (8.5)

  1.  Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю. Пусть математическое ожидание СВ Х равно а, тогда:

(8.6)

Математическое ожиданиеодна из характеристик положения СВ. С этой точки зрения математическое ожидание СВ – есть некоторое число, являющееся как бы ее "представителем" и заменяющее СВ при грубых (ориентировочных) расчетах.

ПРИМЕР 1:  Найти математическое ожидание случайной величины  если известно, что

РЕШЕНИЕ: Используя свойства математического ожидания (8.2), (8.3) и (8.4), найдем

Моменты случайной величины

Понятие момента широко применяется в механике для описания распределения масс (статистические моменты, момент инерции и т.п.).

Начальный момент го порядка случайной величины обозначается символом и определяется выражением:

 (8.7)

Нетрудно убедиться, что введенная выше характеристика математическое ожидание представляет собой не что иное, как первый начальный момент. Используя символ математического ожидания, выражение (8.7) можно представить в следующем виде:

.     (8.8)

Пусть имеется СВ с математическим ожиданием . Введем новое понятие.

Центрированной случайной величиной, соответствующей величине , называется отклонение СВ от ее математического ожидания:

    (8.9)

Нетрудно показать, что математическое ожидание центрированной СВ равна 0:

 (8.10)

Моменты центрированной СВ называются центральными моментами.

Центральным моментом го порядка случайной величины называется математическое ожидание й степени соответствующей центрированной СВ:

 (8.11)

Очевидно, что для любой СВ центральный момент первого порядка равен нулю.

Второй центральный момент СВ, ввиду его крайней важности среди других характеристик, называется дисперсией и обозначается :

     (8.12)

Дисперсией  случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания:

(8.13)

Дисперсия СВ характеризует рассеяние (вариацию, разброс) этой величины относительно ее математического ожидания. Дисперсия  имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину равную .

Средним квадратическим отклонением (стандартным отклонением или стандартом)  случайной величины   называется арифметическое значение корня квадратного из ее дисперсии:

    (8.14)

Свойства дисперсии

  1.  Дисперсия константы равна нулю:

(8.15)

  1.  Постоянный множитель можно выносить за знак дисперсии, возведя его при этом в квадрат:

(8.16)

  1.  Дисперсия алгебраической суммы конечного числа независимых СВ равна сумме их дисперсий. Покажем это свойство для двух СВ:

    

  

    

     (8.17)

Учтем, что и независимые случайные величины, для которых выполняются свойства (8.5) и (8.10), т.е.:

(8.18)

С учетом (8.18) выражение (8.17) примет окончательный вид:

    (8.19)

Вычислим дисперсию разности СВ:

 

  (8.20)

Т.о. мы доказали следующее свойство: Дисперсия разности равна сумме дисперсий.

  1.  Второй центральный момент случайной величины равен разности между вторым начальным моментом и квадратом первого начального момента этой случайной величины. Другими словами:

Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:

   

  

    (8.21)

  1.  Дисперсия произведения независимых СВ и равна произведению дисперсии на дисперсию плюс произведение квадрата математического ожидания СВ на дисперсию плюс произведение квадрата математического ожидания СВ на дисперсию . Покажем это:

      

     

    (8.22)

Асимметрия и эксцесс

Третий центральный момент служит для характеристики асимметрии (скошенности) распределения. Т.к. третий центральный момент имеет размерность куба случайной величины, то чтобы получить безразмерную характеристику, третий центральный момент делят на куб среднего квадратического отклонения СВ :

     (8.23)

Величина называется коэффициентом асимметрии случайной величины.

Рис. 8.1. Характеристика асимметрии распределений

На рис.8.1 показаны два распределения, имеющих положительную (распределение 1) и отрицательную (распределение 2) асимметрию. Естественно, что для симметричного распределения .

Четвертый центральный момент служит для характеристики крутости (островершинности) распределения.

Эксцессом случайной величины называется число

    (8.24)

Рис.8.2. Характеристика островершинности распределений

Число 3 в выражении (8.24) вычитается из отношения потому, что для наиболее часто встречающегося нормального распределения это отношение равно 3. Т.о. распределения более островершинные, чем нормальное имеют положительный эксцесс, распределения с меньшей крутостью, чем нормальное – отрицательный эксцесс, для нормального распределения эксцесс равен нулю (см. рис. 8.2).

ПРИМЕР 3  Для равномерно распределенной СВ (см. пример 2) необходимо вычислить .

РЕШЕНИЕ:  а) Вспомним, что . Дисперсию вычислим по формуле (8.21):

 

   

  


 

А также другие работы, которые могут Вас заинтересовать

19209. Движение заряженных частиц в аксиально-симметричном магнитном поле. Магнитные линзы 412.5 KB
  Лекция № 5. Движение заряженных частиц в аксиальносимметричном магнитном поле. Магнитные линзы. Фокусировка короткой катушкой. Магнитные квадрупольные линзы жесткая фокусировка. Магнитные электронные микроскопы. Аберрация электронных линз. V. Магнитные линзы. ...
19210. Ограничение тока пространственным зарядом в диоде. Формула Ленгмюра и Богуславского для плоских и цилиндрических электродов 325.5 KB
  Лекция № 6. Ограничение тока пространственным зарядом в диоде. Формула Ленгмюра и Богуславского для плоских и цилиндрических электродов. Учет начальных скоростей частиц. Образование виртуального катода. Предельная плотность тока пучка частиц в пролетном промежутке
19211. Расхождение пучков заряженных частиц под действием собственного объемного заряда 421.5 KB
  Лекция № 7. Расхождение пучков заряженных частиц под действием собственного объемного заряда. Прямолинейные пучки электронных лучей электронные пушки Пирса. VII. Формирование электронных и ионных пучков. 7.1. Расплывание пучков заряженных частиц под действи
19212. Электромагнитные ускорители плазмы. МГД приближение для описания динамики 269 KB
  Лекция 8 VIII. Плазменные ускорители. Электромагнитные ускорители плазмы. МГД приближение для описания динамики. Одножидкостная модель. Магнитное давление. Равновесие плазменной границы. Рельсотрон. 8.1. МГД приближение. Для описания ускорения плазмы магни...
19213. Термоэлектронная эмиссия. Статистический и термодинамические вывод формулы плотности тока термоэлектронной эмиссии 557.5 KB
  Лекция № 9. Термоэлектронная эмиссия. Статистический и термодинамические вывод формулы плотности тока термоэлектронной эмиссии. Влияние внешнего электрического поля Эффект Шоттки. Распределение термоэлектронов по энергиям. Средняя энергия термоэлектронов. Эксп
19214. Влияние поверхностной неоднородности материала катода на термоэмиссию 557 KB
  Лекция № 10. Влияние поверхностной неоднородности материала катода на термоэмиссию. Пленочные катоды. Оксидные катоды. Автоэлектронная эмиссия. Изменение температуры эмиттера при термо и автоэлектронной эмиссии. 9.7. Влияние поверхностной неоднородности материала...
19215. Фотоэлектронная эмиссия. Законы Столетова и Эйнштейна. Теория фотоэмиссии 476 KB
  Лекция № 11. Фотоэлектронная эмиссия. Законы Столетова и Эйнштейна. Теория фотоэмиссии. Кривая Фаулера. Применение фотоэмиссии в технике. Фотокатоды. XI. ФОТОэлектронная эмиссия. 11.1. Законы фотоэффекта. В широком смысле фотоэффект это возникновение или измене
19216. Вторичная электрон-электронная эмиссия. Отражение электронов от твердого тела 326 KB
  Лекция № 12. Вторичная электронэлектронная эмиссия. Отражение электронов от твердого тела. Характеристические потери энергии. Закономерности истинной вторичной электронной эмиссии. Приведенная кривая. Эффективные эмиттеры вторичных электронов. XII. вторичная элек
19217. Вторичная электронная эмиссия полупроводников и диэлектриков. Эффективные эмиттеры вторичных электронов 336.5 KB
  Лекция № 13. Вторичная электронная эмиссия полупроводников и диэлектриков. Эффективные эмиттеры вторичных электронов. Электронные умножители. Вторичная ионноэлектронная эмиссия. Потенциальная и кинетическая эмиссия их физический механизм. Закономерности ионноэлек