10958

Числовые характеристики одномерной случайной величины

Лекция

Математика и математический анализ

Числовые характеристики одномерной случайной величины Математическим ожиданием или средним значением случайной величины называется постоянная константа обозначаемая символом и определяемая равенством: 8.1 ПРИМЕР 1: Известны законы распределения СВ и чи

Русский

2013-04-03

163.51 KB

30 чел.

Числовые характеристики одномерной случайной величины

Математическим ожиданием или средним значением случайной величины называется постоянная (константа), обозначаемая символом  () и определяемая равенством:

 (8.1)

ПРИМЕР 1:  Известны законы распределения СВ  и  числа очков, выбиваемых первым и вторым стрелками:

0

1

2

3

4

5

6

7

8

9

10

0.15

0.11

0.04

0.05

0.04

0.10

0.10

0.04

0.05

0.12

0.20

0

1

2

3

4

5

6

7

8

9

10

0.01

0.03

0.05

0.09

0.11

0.24

0.21

0.10

0.10

0.04

0.02

Необходимо выяснить, какой из двух стрелков стреляет лучше.

РЕШЕНИЕ: Очевидно, что из двух стрелков лучше стреляет тот, кто в среднем выбивает большее число очков. Тогда по формуле (8.1) вычислим

Т.к. среднее число выбиваемых очков у двух стрелков одинаковое, то предпочтение нельзя отдать ни одному стрелку – они равносильны.

ПРИМЕР 2:  Непрерывная СВ  равномерно распределена на отрезке . Определим .

РЕШЕНИЕ: а) Прежде всего, определим плотность распределения. Из условия задачи известно:

Используем свойство:


Свойства математического ожидания

  1.  Математическое ожидание постоянной величины равно самой постоянной:

      (8.2)

  1.  Постоянный множитель можно выносить за знак математического ожидания:

    (8.3)

  1.  Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.е.

    (8.4)

  1.  Математическое ожидание произведения конечного числа независимых случайных величин равно произведению их математических ожиданий (покажем это свойство для двух СВ).

 (8.5)

  1.  Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю. Пусть математическое ожидание СВ Х равно а, тогда:

(8.6)

Математическое ожиданиеодна из характеристик положения СВ. С этой точки зрения математическое ожидание СВ – есть некоторое число, являющееся как бы ее "представителем" и заменяющее СВ при грубых (ориентировочных) расчетах.

ПРИМЕР 1:  Найти математическое ожидание случайной величины  если известно, что

РЕШЕНИЕ: Используя свойства математического ожидания (8.2), (8.3) и (8.4), найдем

Моменты случайной величины

Понятие момента широко применяется в механике для описания распределения масс (статистические моменты, момент инерции и т.п.).

Начальный момент го порядка случайной величины обозначается символом и определяется выражением:

 (8.7)

Нетрудно убедиться, что введенная выше характеристика математическое ожидание представляет собой не что иное, как первый начальный момент. Используя символ математического ожидания, выражение (8.7) можно представить в следующем виде:

.     (8.8)

Пусть имеется СВ с математическим ожиданием . Введем новое понятие.

Центрированной случайной величиной, соответствующей величине , называется отклонение СВ от ее математического ожидания:

    (8.9)

Нетрудно показать, что математическое ожидание центрированной СВ равна 0:

 (8.10)

Моменты центрированной СВ называются центральными моментами.

Центральным моментом го порядка случайной величины называется математическое ожидание й степени соответствующей центрированной СВ:

 (8.11)

Очевидно, что для любой СВ центральный момент первого порядка равен нулю.

Второй центральный момент СВ, ввиду его крайней важности среди других характеристик, называется дисперсией и обозначается :

     (8.12)

Дисперсией  случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания:

(8.13)

Дисперсия СВ характеризует рассеяние (вариацию, разброс) этой величины относительно ее математического ожидания. Дисперсия  имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину равную .

Средним квадратическим отклонением (стандартным отклонением или стандартом)  случайной величины   называется арифметическое значение корня квадратного из ее дисперсии:

    (8.14)

Свойства дисперсии

  1.  Дисперсия константы равна нулю:

(8.15)

  1.  Постоянный множитель можно выносить за знак дисперсии, возведя его при этом в квадрат:

(8.16)

  1.  Дисперсия алгебраической суммы конечного числа независимых СВ равна сумме их дисперсий. Покажем это свойство для двух СВ:

    

  

    

     (8.17)

Учтем, что и независимые случайные величины, для которых выполняются свойства (8.5) и (8.10), т.е.:

(8.18)

С учетом (8.18) выражение (8.17) примет окончательный вид:

    (8.19)

Вычислим дисперсию разности СВ:

 

  (8.20)

Т.о. мы доказали следующее свойство: Дисперсия разности равна сумме дисперсий.

  1.  Второй центральный момент случайной величины равен разности между вторым начальным моментом и квадратом первого начального момента этой случайной величины. Другими словами:

Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:

   

  

    (8.21)

  1.  Дисперсия произведения независимых СВ и равна произведению дисперсии на дисперсию плюс произведение квадрата математического ожидания СВ на дисперсию плюс произведение квадрата математического ожидания СВ на дисперсию . Покажем это:

      

     

    (8.22)

Асимметрия и эксцесс

Третий центральный момент служит для характеристики асимметрии (скошенности) распределения. Т.к. третий центральный момент имеет размерность куба случайной величины, то чтобы получить безразмерную характеристику, третий центральный момент делят на куб среднего квадратического отклонения СВ :

     (8.23)

Величина называется коэффициентом асимметрии случайной величины.

Рис. 8.1. Характеристика асимметрии распределений

На рис.8.1 показаны два распределения, имеющих положительную (распределение 1) и отрицательную (распределение 2) асимметрию. Естественно, что для симметричного распределения .

Четвертый центральный момент служит для характеристики крутости (островершинности) распределения.

Эксцессом случайной величины называется число

    (8.24)

Рис.8.2. Характеристика островершинности распределений

Число 3 в выражении (8.24) вычитается из отношения потому, что для наиболее часто встречающегося нормального распределения это отношение равно 3. Т.о. распределения более островершинные, чем нормальное имеют положительный эксцесс, распределения с меньшей крутостью, чем нормальное – отрицательный эксцесс, для нормального распределения эксцесс равен нулю (см. рис. 8.2).

ПРИМЕР 3  Для равномерно распределенной СВ (см. пример 2) необходимо вычислить .

РЕШЕНИЕ:  а) Вспомним, что . Дисперсию вычислим по формуле (8.21):

 

   

  


 

А также другие работы, которые могут Вас заинтересовать

50399. Проверка закона сохранения импульса и закономерности времени упругого удара шаров с использованием теории размерности 59 KB
  Масса шара равна 17050510‾ кг Диаметр шара равен 3405 10‾ м Плотность шара равна 70210 кг м Модуль Юнга равен 100 ГПа Длина нити маятника равна 049 м Скорости шаров после соударения: V 1=2√gl sinα 1cр 2 1 V 2=2√gl sinα 2cр 2 2 Скорость шара до соударения: V1= 2 √gl sinα 2 3 По закону сохранения импульса импульс шара до соударения равен сумме импульсов шаров после соударения: P = P ...
50400. Изучение принципа работы баллистического маятника 80.5 KB
  Определение момента инерции баллистического маятника и коэффициента упругих сил кручения.2кг Результаты опытов вводим в ПЭВМ и с помощью специальной программы производим расчет: а коэффициента упругих сил кручения: б момента инерции баллистического маятника: Задание 2. Определение момента инерции баллистического маятника и коэффициента упругих сил кручения методом наименьших квадратов.
50402. Определение скорости пули при помощи крутильного баллистического маятника 279 KB
  Цель работы: изучение принципа работы баллистического маятника и закона сохранения момента импульса; экспериментальная проверка зависимостей между физическими величинами характеризующими крутильные колебания; экспериментальное определение постоянной упругих сил кручения и момента инерции баллистического маятника; определение коэффициента затухания крутильных колебаний. экспериментальное определение с помощью баллистического маятника скорости пули Приборы и принадлежности: баллистический маятник ГРМ02 со счётчиком периодов...
50404. Изучение законов динамики вращательного движения твердого тела вокруг неподвижной оси на маятнике обербека 76.5 KB
  В этой модели считается что трение в оси блока 8 отсутствует этот блок невесом а момент сил трения Μтр в оси блока с крестовиной не зависит от угловой скорости вращения. В этих условиях ускорение груза массой m постоянно на всем отрезке Н и равно: где r радиус намотки I момент инерции блока с крестовиной r=r1 либо r2 I определяется положением грузов массой m´ каждый и моментом инерции блока без грузов I0.1 Проверка независимости момента сил трения Μтр от угловой скорости вращения блока Если Μтр не зависит от угловой...
50407. Зависимость между физическими величинами 70 KB
  Экспериментально проверил зависимость между физическими величинами характеризующими вращение твёрдого тела вокруг неподвижной оси I и Мтр и рассчитали их.