10959

Многомерные случайные величины

Лекция

Математика и математический анализ

Многомерные случайные величины Очень часто результат испытания характеризуется не одной случайной величины а некоторой системой случайных величин которую называют также многомерной мерной случайной величиной или случайным вектором . Случайные величины в

Русский

2013-04-03

198.57 KB

82 чел.

Многомерные случайные величины

Очень часто результат испытания характеризуется не одной случайной величины, а некоторой системой случайных величин , которую называют также многомерной (    мерной) случайной величиной или случайным вектором .

Случайные величины , входящие в систему, могут быть как дискретными, так и непрерывными.

Приведем примеры многомерных случайных величин:

  1.  физическое состояние человека можно охарактеризовать системой случайных величин: рост, вес, возраст, и т.п.
  2.  успеваемость студента можно описать многомерной случайной величиной , где оценка по му предмету.

Геометрически двумерную и трехмерную случайные величины можно интерпретировать случайной точкой (вектором) на плоскости или в трехмерном пространстве . Как отмечалось ранее, наиболее полным описанием СВ является закон ее распределения. Дальнейшее рассмотрение многомерных СВ проведем на примере двумерных случайных величин.

Определим, как и для одномерной СВ, интегральную функцию распределения двумерной СВ:

    (9.1)

Геометрически функция распределения означает вероятность попадания случайной точки в заштрихованную область – бесконечный квадрант, лежащий левее и ниже точки  (рис. 9.1). Правая и верхняя границы области в квадрант не включаются – это значит, что функция распределения непрерывна слева по каждому из аргументов.

В случае дискретной двумерной случайной величины ее функция распределения определяется по формуле:

Рис. 9.1.

    (9.2)

Здесь (9.2) суммирование вероятностей производится по всем значениям , для которых и по всем , для которых .

Свойства двумерной функции распределения

  1.  Функция распределения  есть неотрицательная функция, заключенная между нулем и единицей, т.е.

.      (9.3)

Это утверждение следует из того, что интегральная функция распределения двумерной СВ есть вероятность.

  1.  Функция распределения  есть неубывающая функция, по каждому из аргументов, т.е.

  

      (9.4)

Т.к. при увеличении какого-либо аргумента заштрихованная область на рис.9.1 увеличивается, то вероятность попадания случайной точки в эту область, по крайней мере, уменьшиться не может.

  1.  Если хотя бы один из аргументов обращается в , функция распределения  равна нулю, т.е.

  (9.5)

Функция распределения в данных случаях равна нулю, т.к. события и их произведение представляют невозможные события.

  1.  Если один из аргументов равен , двумерная функция распределения  становится равной одномерной функции распределения от другого аргумента:

    

      (9.6)

где . Очевидность данного свойства (9.6) вытекает из того, что произведение события и достоверного события есть само событие , аналогично можно показать и для .

  1.  Если оба аргумента равны , то функция распределения  равна единице:

.      (9.7)

Это свойство обусловлено тем фактом, что совместная реализация двух достоверных событий и есть событие достоверное, а вероятность достоверного события равна единице.

Рассмотрим вероятность попадания двумерной СВ в некоторый прямоугольник (см. рис. 9.2). Вероятность попадания случайной точки в указанный прямоугольник можно записать:

.   (9.8)

Рис.9.2. Вероятность попадания в прямоугольник

Зная функцию распределения , выразим искомую вероятность. Эта вероятность равна вероятности попадания в бесконечный квадрант с вершиной , минус вероятности попадания в квадранты с вершинами и плюс вероятность попадания в квадрант (т.к. эта вероятность вычиталась дважды). Окончательно получим:

(9.9)

Плотность вероятности двумерной случайной величины

Двумерная случайная величина называется непрерывной, если ее функция распределения - непрерывная функция, дифференцируемая по каждому из аргументов, и существует вторая смешанная производная .

Как и для одномерной случайной величины, введем понятие плотности вероятности двумерной СВ.

Оценим вероятность попадания случайной точки в прямоугольник со сторонами и . Средняя плотность вероятности в данном прямоугольнике равна отношению вероятности к площади прямоугольника . Будем неограниченно уменьшать стороны прямоугольника, устремив и к нулю. С учетом (9.9) получим:

 

    (9.10)

Учитывая то, что функция  непрерывна и дифференцируемая по каждому аргументу, выражение (9.10) примет вид:

 (9.11)

Плотностью вероятности (плотностью распределения или совместной плотностью) непрерывной двумерной случайной величины называется вторая смешанная частная производная ее функции распределения, т.е.

   (9.12)

Плотность распределения двумерной СВ обладает свойствами, аналогичными свойствам плотности вероятности одномерной СВ:

  1.  Плотность распределения двумерной случайной величины есть неотрицательная функция, т.е.

     (9.13)

Это свойство вытекает из того, что  – функция неубывающая по каждому аргументу.

  1.  Вероятность попадания непрерывной двумерной случайной величины в область равна

   (9.14)

По аналогии с одномерной СВ, для двумерной СВ введем понятие "элемент вероятности", равный . Он представляет (с точностью до бесконечно малых более высоких порядков) вероятность попадания случайной точки в элементарный прямоугольник со сторонами и . Тогда вероятность попадания двумерной СВ в область на плоскости геометрически изображается объемом цилиндрического тела, ограниченного сверху поверхностью распределения и опирающегося на область , а аналитически – двойным интегралом (9.14).

  1.  Функция распределения непрерывной двумерной случайной величины выражается через ее плотность вероятности по формуле:

   (9.15)

Функция распределения  есть вероятность попадания в бесконечный квадрант , который можно рассматривать как прямоугольник, ограниченный абсциссами и и ординатами и .

  1.  Двойной несобственный интеграл в бесконечных пределах от плотности вероятности двумерной СВ равен единице.

    (9.16)

Несобственный интеграл (9.16) есть вероятность попадания во всю плоскость , т.е. вероятность достоверного события, равная 1.

Зная плотность вероятности двумерной СВ можно найти функции распределения и плотности вероятностей ее одномерных составляющих и . Учитывая (9.6) и (9.15), получим:

  (9.17)

Дифференцируя функции распределения и по аргументам и соответственно, получим плотности вероятности одномерных СВ:

 (9.18)

т.е. несобственный интеграл в бесконечных пределах от совместной плотности двумерной случайной величины по аргументу дает плотность вероятности , а по аргументу – плотность вероятности .

ПРИМЕР 1:  Задано распределение вероятностей дискретной двумерной случайной величины:

Y

X

3

10

12

4

0.17

0.13

0.25

5

0.10

0.30

0.05

Требуется: a) найти законы распределения составляющих и ;
b) составить функцию распределения.

РЕШЕНИЕ: а) Сложив вероятности “по столбцам”, найдем закон распределения составляющей :

X

3

10

12

>12

P

0.27

0.43

0.3

F

0

0.27

0.7

1

Сложив вероятности "по строкам", аналогично найдем закон распределения составляющей :

Y

4

5

>5

P

0.55

0.45

F

0

0.55

1

b) Составим функцию распределения:

Y

X

3

10

12

>12

4

0

0

0

0

5

0

0.17

0.30

0.55

>5

0

0.27

0.7

1

ПРИМЕР 2:  (Задача Бюффона)

Иглу длиной бросают на плоскость, на которой на расстоянии друг от друга проведены параллельные линии. Определите вероятность пересечения иглой одной из линий, если .

РЕШЕНИЕ. Введем систему случайных величин , где расстояние от середины игла до ближайшей линии, а острый угол между иглой и линией (см. рис.). Очевидно, что распределено равномерно в интервале , а распределен равномерно в интервале . Учитывая, что СВ и независимые, получим при .

Пересечение иглой одной из линий происходит при заданном угле , если . Отсюда получим искомую вероятность:

    


 

А также другие работы, которые могут Вас заинтересовать

75590. Музичні захоплення, План-конспект уроку з англійської мови для учнів 9-х класів 90.5 KB
  Обладнання: підручник вікторина Pop Music Quiz НО1 текст для читання My fvourite singer Elvis Presley king of rock nd roll HO2 Fill in the tble HO3 Write biogrphy of your own fvourite pop strrdquo;HO4 тексти 1 2 для позакласного читання з серії Pop rt з молодіжних журналів НO5 НO6. Т: We re going to tlk bout your fvourite music musicins singers nd pop groups By the end of the lesson you should be ble: to tlk bout your fvourite music musicins singers nd pop groups; to conduct your own dilogues using the given one s n...
75591. Музичні захоплення. Мій улюблений співак 63.5 KB
  Обладнання: підручник текст і запис пісні Yesterdy групи Betles НО1 текст цієї пісні з пропускамНO2 текст для аудіювання The Betles НО3 True or Flse HO4 HO5. Предявлення тексту для аудіювання The Betles. Т: Wht do you think Do you know the fmous group The Betles Wht hits of the Betles do you like re the Betles still populr in Englnd Why 2 WhileListening ctivities. Н03: The Betles The Betles becme ntionlly fmous in Englnd in October 1962 when their first single record Love me do entered the Hit Prde t number 27.
75592. Музичні захплення, План-конспект уроку з англійської мови для учнів 9-х класів 59.5 KB
  Практикувати учнів у читанні тексту з метою отримання загального уявлення (scanning) та з метою точного й повного розуміння усієї інформації, що в ньому міститься (skimming). Навчати висловлюванню за змістом прочитаного тексту.
75593. Шекспір — видатний англійський письменник 69 KB
  Обладнання: підручник автентичний текст для читання Shkespere HO1 True or Flse H02 nswer the questions H03 Strip story H04 текст для позакласного читання про англійських або американських акторів на вибір учителя. Т: The topic of our tody\'s lesson is Shkespere the gretest English writer...
75594. Відвідування кінотеатру 71 KB
  Активізувати у мові учнів ЛО теми «Відвідування кінотеатру». Практикувати учнів у читанні тексту з метою отримання загального уявлення (skimming) та з метою максимально повного й точного розуміння всієї інформації, що міститься в тексті (scanning).
75595. Відвідування кінотеатру в Англії, План-конспект уроку з англійської мови для учнів 9-х класів 61.5 KB
  Активізувати у мові учнів ЛО теми «Відвідування кінотеатру», «Кіно». Практикувати в аудіюванні та читанні тексту з метою отримання загального уявлення (skimming) та з метою максимально повного й точного розуміння всієї інформації, що міститься в тексті (scanning). Практикувати учнів у спілкуванні в формі діалогу-розпитування, діалогу-обміну думками.
75596. Кіно в Британії. Моє відвідування кінотеатру 58.5 KB
  Обладнання: підручник Keyfcts bout film HO1 Trueorflse H02. T: In your notebook write 9 types of films. I will cll out one type of films t time. If you her one of your type of films put your hnd up nd cross the word out.
75597. Театри в Великобританії. Бесіда по телефону, План-конспект уроку з англійської мови для учнів 9-х класів 70 KB
  Активізувати у мові учнів ЛО теми «Відвідування театру». Практикувати учнів у читанні тексту з метою отримання загального уявлення (skimming) з метою максимально повного й точного розуміння всієї інформації, що міститься в тексті (scanning). Повторити навчальний матеріал про ведення бесіди по телефону.
75598. ЦИФРОВАЯ ОБРАБОТКА КОРОТКИХ СИГНАЛОВ. ОПРЕДЕЛЕНИЕ ЧАСТОТЫ СИГНАЛА 140 KB
  Одной из важнейших задач цифровой обработки зашумленных сигналов является обнаружение информативного сигнала в потоке данных искаженных шумами и помехами и определение его параметров. Каждая из этих операций позволяет выполнять преобразования исходного сигнала например переход сигнала из временной области в частотную или наоборот причем при этом производится уменьшение уровня шумов в обработанном сигнале. В задачах обнаружения и определения параметров защумленных сигналов усиление эффекта подавления шумов и...