10961

Нормальный (гауссов) закон распределения

Лекция

Математика и математический анализ

Нормальный гауссов закон распределения Нормальный закон распределения закон Гаусса играет исключительно важную роль в теории вероятностей. Это наиболее часто встречающийся на практике закон распределения СВ. Главная особенность выделяющая закон Гаусса состоит в

Русский

2013-04-03

209.39 KB

161 чел.

Нормальный (гауссов) закон распределения

Нормальный закон распределения (закон Гаусса) играет исключительно важную роль в теории вероятностей. Это наиболее часто встречающийся на практике закон распределения СВ. Главная особенность, выделяющая закон Гаусса, состоит в том, что он является предельным законом, к которому приближаются другие законы при весьма часто встречающихся типичных условиях.

Доказано, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма не жестких ограничениях) приближенно подчиняется нормальному закону. И это свойство выполняется тем точнее, чем большее количество СВ суммируется.

По нормальному закону распределены ошибки измерений, белый шум в электронике и т.п.

Непрерывная случайная величина имеет нормальный закон распределения (закон Гаусса) с параметрами и , если ее плотность вероятности определена на всей числовой оси и имеет вид:

.     (11.1)

Кривую нормального закона распределения называют нормальной или гауссовой кривой (см. рис. 11.1.). Гауссова кривая имеет симметричный холмообразный вид с максимумом в точке , причем сам максимум равен . Выясним смысл параметров и , входящих в (11.1).

Рис.11.1. Нормальное распределение

Для этого вычислим сначала математическое ожидание:

 (11.2)

Произведем замену переменных, определив , тогда , а . Подставив в (11.2) получим:

  


   (11.3)

В выражении (11.3) первый интеграл равен нулю, как интеграл от нечетной функции в симметричных относительно начала координат пределах; второй интеграл – это интеграл Пуассона – Эйлера, который равен . Тогда окончательно получим:

   (11.4)

Итак, параметр в плотности вероятности нормального распределения равен математическому ожиданию СВ .

Вычислим теперь дисперсию СВ :

 

Произведя ту же замену переменных, что и при вычислении математического ожидания, получим:

(11.5)

Поясним немного полученный результат. Действительно, первое слагаемое в выражении (11.5) равно нулю, т.к. стремится к нулю при быстрее, чем возрастает любая степень . А второе слагаемое это интеграл Пуассона – Эйлера.

Следовательно, параметр в формуле (11.1) есть не что иное, как среднее квадратическое отклонение СВ .

Выведем общую формулу для центрального момента любого порядка СВ ,распределенной по нормальному закону. По определению:

 

Здесь, как и в предыдущих интегралах применили подстановку, а полученный интеграл будем брать по частям:

 (11.6)

Здесь, при взятии интеграла по частям первое слагаемое равно нулю, т.к. стремится к нулю быстрее, чем возрастает любая степень . Теперь запишем центральный момент порядка:

  (11.7)

Сравнивая правые части выражений (11.6) и (11.7) получим:

    (11.8)

Рекуррентное соотношение (11.8) справедливо для центральных моментов любого порядка. Вспомним, что , а . Тогда все центральные моменты нечетных порядков для нормального распределения равны нулю.

Нормальное распределение симметрично:

   (11.9)

Коэффициент эксцесса нормального распределения, согласно (11.8) равен:

  (11.10)

Нормальный закон распределения СВ с параметрами , обозначается и называется стандартным или нормированным, а соответствующая нормальная кривая – стандартной или нормированной.

Вероятность попадания на интервал

Рассмотрим вероятность попадания на интервал СВ , подчиненной нормальному закону распределения с параметрами и . Для вычисления этой вероятности воспользуемся общей формулой:

  (11.11)

где интегральная функция распределения СВ . Найдем

 (11.12)

Сделаем замену переменных в (11.12)

   (11.13)

Отметим, что этим преобразованием (заменой переменных) нормальное распределение с произвольными значениями и приводится к стандартному нормальному закону с параметрами .

Интеграл (11.13) не выражается через элементарные функции, но его обычно выражают через специальную функцию, выражающую определенный интеграл от или  (так называемый интеграл вероятности, для которого составлены статистические таблицы).

Вообще существует множество разновидностей таких функций, например:

 (11.14)

Выберем в качестве такой функции так называемую нормальную функцию распределения . Выразим функцию распределения (11.13) через :

    (11.15)

Подставим теперь (11.15) в (11.11):

 (11.16)

Свойства нормальной функции распределения

1.

2.

3.  функция неубывающая.

4. Из-за симметричности стандартного нормального распределения относительно начала координат следует (см.рис.11.2):

На практике очень часто встречается задача вычисления вероятности попадания СВ на участок симметричный относительно центра рассеивания . Рассмотрим такой участок длиной . Вычислим эту вероятность:

Рис.11.2. Стандартное распределение

 (11.17)

Часто расстояние выражают в единицах . На рис. 11.3. для стандартного нормального распределения показаны вероятности (односторонние) отклониться от математического ожидания на .

Рис.11.3. Свойства нормального закона

ПРИМЕР 1.  Полагая, что рост студентов – нормально распределенная случайная величина с параметрами и . Необходимо найти:

  1.  выражение плотности вероятности и функции распределения СВ ;
  2.  доли костюмов 4-го роста (176 – 182 см) и 3-го роста(170 – 176 см), которые нужно предусмотреть в общем объеме производства;
  3.  квантиль и 10%-ную точку СВ ;
  4.  сформулировать "правило трех сигм" для СВ ;

РЕШЕНИЕ  а) По формулам (11.1), (11.12) и (11.15) запишем

б) Доля костюмов 4-го роста (176 – 182 см) в общем объеме производства определим по формуле (11.16):

Долю костюмов 3-го роста (170 – 176 см) можно определить аналогичным образом, но, если учесть, что данный интервал симметричен относительно , то по формуле (11.17) оценим:

в) Квантиль СВ найдем из уравнения (11.15):

Это значит, что 70% студентов имеют рост до 176 см. 10%-ная точка СВ - это квантиль , который вычислив аналогично получим .

г) "Правило трех сигм" для нормального распределения:

.

Тогда с вероятностью равной 0.9974 рост студентов находится в интервале:

ПРИМЕР 2.  Средняя стоимость ценной бумаги составляет 2000 руб., а среднее квадратичное отклонение равно 100 руб. Предполагается, что цена имеет нормальное распределение. Определить вероятность того, что в день покупки цена будет заключена в пределах от 1800 руб. до 2300 руб. Найти с надежностью 0.9 интервал Δ изменения цены бумаги, симметричный относительно математического ожидания.

РЕШЕНИЕ   a)

б)

Значит стоимость ценной бумаги заключена в интервале (1835.5; 2164.5).

Распределение ("хи–квадрат")

Так называется распределение вероятностей СВ вида:

  (11.18)

где независимые случайные величины, имеющие одно и то же нормальное распределение с параметрами . Число называется числом степеней свободы распределения . Соответствующая плотность (см. рис.11.4.) описывается формулой:

 (11.19)

Рис. 11.4. Распределение "хи-квадрат"

Распределение представляет собой частный случай так называемого гамма – распределения.


 

А также другие работы, которые могут Вас заинтересовать

23812. Конкретный смысл действия умножения 20.26 KB
  Почему цель: сколько раз и по сколько раз взяли число 777 7777 444 444 222 888 Вычисли: выходят два ученика Остальные в тетрадях. 27999= 217777= Сколько раз из 27 вычли 9 из 28 вычли 7 Значит сколько раз по 9 содержится в 27 по 7 в 14 Внимательно слушаем Запиши число 2728 через сумму 9 7. запись: 999=27; 7777=21по 9 три раза Итак внимание Сумму какого числа мы находили Сколько раз мы сложили это число запишем Это обозначает что мы взяли по 9 взяли три раза кто нибудь...
23813. Задачи на умножение 16.86 KB
  Класс: 2 Тип урока: комбинированный Тема: задачи на умножение; ФОУД: фронтальная индивидуальная Технология: традиционная Дидактическая цель: создать условия для отработки навыка замены действий сложения умножением в решении задач; Задачи: 1.Образовательные: 1 совершенствовать навыки устного счета 2 заменять сумму одинаковых слагаемых умножением; 3 отрабатывать умения решать задачи; 4закреплять правила замены суммы одинаковых слагаемых умножением. вычисление с помощью замены умножения сложением замени суммой одинаковых слагаемых: 6=...
23814. Стихи А. Плещеева о весне 19.54 KB
  Плещеева о весне Тип урока: урок чтения лирического произведения и коллективного анализа ФОУД: фронтальная Технология: традиционная Оборудование: учебник Литературное чтение Канакина 2кл. Плещеева о весне Задачи Образовательные: познакомить с важными фактами из жизни и творчества А. Плещеева совершенствовать умение анализировать лирическое произведение совершенствовать навык сознательного правильного выразительного чтения Развивающие: развивать творческое воображение детей развивать литературную речь учащихся развивать память...
23815. Рассказ В. Осеевой «Волшебное слово» 20.25 KB
  Вспомним содержание произведения ответив на вопросы кроссворда у каждого на парте Учитель Читает вопросы: Как зовут мальчика Что было в руке у старика Как зовут девочку Кто пекла пирожки На чем сидел старик в начале рассказа Кого попросил Павлик чтобы его взяли кататься на лодке Где Павлик нашел бабушку Что пекла бабушка На чем чертил старик зонтиком Что попросил Павлик у Лены На чем хотел покататься Павлик Куда положил Павлик руку когда попросил брата взять его покататься Как назвал старика Павлик Какое...
23816. Урок по литературе Рассказ В. Осеевой «Волшебное слово» 21.54 KB
  Для того чтобы узнать какая тема будет сегодня у нас на уроке вам нужно составить правильные словосочетания: сказка настольная лампа волшебное слово интересная Обратите внимание какое слово во втором столбике не может сочетаться с другими словами С каким словом оно сочетается Так называется произведение которое мы сегодня будем изучать на уроке. Увлекательные истории цикла рассказов Волшебное слово очень нравились детям.
23817. В. Осеева «Волшебное слово» 49.5 KB
  Осеева Волшебное слово УМК Школа России Л. сказка деревянная палочка красивый лампа интересная слово настольная цветок волшебное Стрелкой соедините слова связанные по смыслу. Слайд 3 Какое словосочетание здесь лишнее Почему Слайд 4 Можем ли мы употребить слово волшебное с другими славами из первого столбика Что у...
23818. В. Осеева « Волшебное слово». 267.17 KB
  Карточки с пословицами карточки с вежливыми словами выставка книг о вежливости мяч карточки с названиями частей плана учебник портрет В. словарь Ожегова кроссворд Ход урока. Как вы понимаете эти слова Волшебное доброе слово может подбодрить человека в трудную минуту поможет улучшить наше настроение. Словарь вежливых слов Растает даже ледяная глыба от слова теплого СПАСИБО.
23819. Урок чтения лирического произведения и коллективного анализа 19.02 KB
  Дата: 19 февраля Класс: 2 Тема: Тип урока: урок чтения лирического произведения и коллективного анализа ФОУД: фронтальная Технология: традиционная Оборудование: учебник Литературное чтение Канакина 2кл. Вы любите зиму Почему Почему мы рады весне Прочитаем еще раз стихотворение: чтение 1 го четверостишия Найдите рифмующиеся слова злится стучится подберите синоним к слову не даром не зря Какой героине вы больше сопереживаете весне чтение 2 четверостя Кто помогает весне Как вы понимаете значение слова трезвон чтение...
23820. Рассказ В. Осеевой «Почему?» 17.22 KB
  Класс: 2 Тема: Рассказ В. Дидактическая цель: создать условия для восприятия рассказа В.Образовательные: познакомить с произведением отрабатывать умение формулировать главную мысль и тему рассказа совершенствовать навык правильного осознанного чтения 2. Воспитательные: воспитывать моральные качества воспитывать наблюдательность воспитывать интерес к рассказу как к жанру Ход урока: этапы деятельность учителя деятельн.