10966

Статистическая (эмпирическая) функция распределения

Лекция

Математика и математический анализ

Статистическая эмпирическая функция распределения Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот частостей. В теории вероятностей под распределением понимают соответствие между возможными з...

Русский

2013-04-03

115.14 KB

30 чел.

Статистическая (эмпирическая) функция распределения

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот (частостей).

В теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике – соответствие между наблюдаемыми значениями и их частотами, или относительными частотами.

Пример 1. Задана выборка объемом с соответствующими частотами. Необходимо найти частости (относительные частоты).

2

6

12

3

10

7

3/20

10/20

7/20

Контроль:   .

Пусть, исследуется статистическое распределение, частот количественного признака (случайной величины) . Введем обозначение:

число наблюдений, при которых наблюдалось значение признака меньшее ;

общее число наблюдений (объем выборки).

Очевидно, что относительная частота (частость) события равна .

Статистической функцией распределения случайной величины называется функция, определяющая для каждого значения относительную частоту события

   (3.1)

Сравним статистическую и интегральную функции распределения. Вспомним (теорема Бернулли), что относительная частота события , т.е. стремится по вероятности к вероятности этого события.

Функция  обладает теми же свойствами, что и :

  1.  Значения .
  2.  Эмпирическая функция распределения неубывающая.
  3.  Если наименьшая варианта, то при .
  4.  Если наибольшая варианта, то при .

Пример 2. Построить эмпирическую функцию по данной выборке:

2

6

10

12

18

30

Решение: Найдем объем выборки . Теперь найдем статистическую функцию распределения:

2

6

10

>10

0

12 / 60

30 / 60

1

Представим в аналитическом и графическом виде:

Рис. 3.1. Статистическая функция распределения

Выборочные значения и оценка параметров.

Рассмотрим один из возможных методов (есть и другие) оценивания среднего значения и дисперсии случайной величины по независимым наблюдением:

       (3.2)

 (3.3)

Здесь и – выборочное среднее и выборочная дисперсия соответственно. Индекс в формуле (см. 3.3) указывает на смещённость оценки дисперсии. Наряду с вышеприведенными характеристиками, при обработке результатов наблюдений обычно находят следующие оценки:

  1.   выборочная дисперсия (несмещённая)

 (3.4)

  1.  среднее квадратическое отклонение

       (3.5)

  1.  выборочный коэффициент асимметрии

     (3.6)

  1.  выборочный коэффициент эксцесса

   (3.7)

Для установления качества или "правильности" любой оценки используются свойства (требования) "хороших оценок".

Требования "хороших оценок"

  1.  Несмещённость.

Во-первых, желательно, чтобы математическое ожидание оценки равнялось оцениваемому параметру:

.       (3.8)

Здесь  оценка параметра . Если свойство (3.8) имеет место, то оценка называется несмещённой.

  1.  Эффективность.

Во-вторых, желательно, чтобы среднеквадратическая ошибка данной оценки была наименьшей среди всех возможных оценок, т.е.:

.    (3.9)

Где  исследуемая оценка, а  любая другая оценка. Если это свойство имеет место, то оценка  называется эффективной.

  1.  Состоятельность.

В-третьих, желательно, чтобы оценка сходилась к оцениваемому параметру с вероятностью, стремящейся к единице по мере увеличения размера выборки, т.е. для любого

.    (3.10)

Если выполнено условие (3.10), то оценка называется состоятельной. Из неравенства Чебышева следует, что достаточным для выполнения (3.10) является условие:

   (3.11)

В качестве примера "хорошей оценки" рассмотрим оценку среднего значения (3.2). Математическое ожидание выборочного среднего равно:

 (3.12)

Следовательно, согласно (3.8), оценка  несмещённая.

Среднеквадратическая ошибка выборочного среднего равна:

(3.13)

Поскольку наблюдения независимы, то математическое ожидание членов, содержащих смешанные произведения, равны нулю. Поэтому из (3.13) получим:

(3.14)

Т.о., согласно (3.11) оценка  состоятельная. Можно показать, что эта оценка эффективна.

Рассмотрим оценку дисперсии по формуле (3.3).

(3.15)

Однако

 (3.16)

Поскольку  и , то, подставив в (3.16), получим:

(3.17)

Следовательно, оценка  смещённая.

Хотя оценка (выборочная дисперсия) и является смещённой оценкой, эта оценка состоятельна и эффективна. Из (3.17) понятно, что для получения несмещённой оценки следует взять несколько видоизмененную выборочную дисперсию (3.4).


 

А также другие работы, которые могут Вас заинтересовать

32230. Синтез оптимального управления при ограничениях на управляющее воздействие 163 KB
  Более эффективно решение задач синтеза оптимального управления при ограничениях управляющих воздействий осуществляется путем использования принципа максимума предложенного в 1956 году академиком Л. Принцип максимума является дальнейшим развитием вариационного исчисления. Это условие положено в основу принципа максимума. Рассмотрим применение принципа максимума Понтрягина для решения задач оптимизации.
32231. Метод динамического программирования Р. Беллмана 1.14 MB
  6 величина определяется в соответствии с уравнениями 7.10 При условиях ; Оптимальное уравнение определяется в результате решения уравнения 7.10 можно заменить уравнениями в частных производных 7.4 получим Из уравнения получим П 7.
32232. Связь между принципами максимумами и динамическим программированием 359.5 KB
  17 является скалярным произведением векторов Ψ и X: Н = ψ 8. Вектор касателен к траектории t и нормален к векторам ψ и ψ что определяет оптимальный процесс перехода из в . Максимальное быстрое уменьшение J будет происходить очевидно что если вектор скорости Хточка в направлении убывании убывание J будет максимальным. Для обеспечения этого необходимо чтобы проекция вектора скорости движения изображающей точки Хточка на вектор отрицательной нормалям к поверхности J...
32233. Синтез оптимального по быстродействию программного управления 211 KB
  3 Где уравнение динамики объекта управления Поскольку то максимум функции Н реализуется одновременно с максимумом функции: 9. Решим задачу определения оптимального по быстродействию программного управления на примере объекта второго порядка: .1 То структурная схема объекта представлена на рис. Структурная схема объекта управления В соответствии со структурной схемой на рис.
32234. Синтез замкнутых систем управления, оптимальных по быстродействию 147 KB
  невозможно путём интегрирования уравнений объекта найти уравнения траекторий в nмерном пространстве.6 в этом случае можно представить относительно других координат: где i = 12n Тогда уравнения проекций фазовых траекторий на координатные плоскости при U = const будут иметь вид: Интегрируя это выражение получим: где ; координаты точек через которые проходит проекция 10.2 С помощью уравнений проекций фазовых траекторий определяем координаты точек переключений U.6 получим выражение...
32235. Аналитическое конструирование регуляторов (АКОР) 137.5 KB
  он ограничивает и отклонение переменных состояния объекта управления и управляющего воздействие данная задача определения оптимального регулятора получила широкое распространение. Задана динамика объекта управления: ; 1 или 1 где А=[nn] коэффициентная матрица динамики объекта B=[nm] матрица коэффициентов управляющих воздействий xiн=xi0 xiк=xitк граничные условия. Критерий...
32236. Системы, оптимальные по расходу ресурсов 199 KB
  Все они имеют ограничения по величине управляющего воздействия что довольно очевидно.4 В качестве критерия выберем интегральный критерий обеспечивающий одновременно ограничение переходного процесса по времени и по расходу управляющего воздействия п1.16 Системы из исходного состояния х10х20 в начале координат х1к=0х2к=0 должно производится следующим путем изминения управляющего воздействия: п1.17 Следовательно необходимо найти...
32237. Оптимальное управление. Определение оптимального управления. Критерии оптимальности 370.5 KB
  Количественная мера по которой производится сравнительная оценка качества управления и которая включает в себя максимальное количество отдельных показателей качества управления называется критерием оптимизации. Если эту меру критерий можно выразить формально в виде математического выражения то тогда можно задачу синтеза оптимального управления сформулировать следующим образом. Необходимо найти такой закон управления объектом Ut или UХ где tвремя X внутренние и выходные переменные координаты объекта управления...
32238. Определение оптимального управления формулируется в виде трех типов задач 169 KB
  Дана замкнутая система управления объект управления и регулятор. Второй тип задач: Дана разомкнутая система автоматического управления. В итоге решения этой задачи получается оптимальная система программного управления см.