10966

Статистическая (эмпирическая) функция распределения

Лекция

Математика и математический анализ

Статистическая эмпирическая функция распределения Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот частостей. В теории вероятностей под распределением понимают соответствие между возможными з...

Русский

2013-04-03

115.14 KB

30 чел.

Статистическая (эмпирическая) функция распределения

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот (частостей).

В теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике – соответствие между наблюдаемыми значениями и их частотами, или относительными частотами.

Пример 1. Задана выборка объемом с соответствующими частотами. Необходимо найти частости (относительные частоты).

2

6

12

3

10

7

3/20

10/20

7/20

Контроль:   .

Пусть, исследуется статистическое распределение, частот количественного признака (случайной величины) . Введем обозначение:

число наблюдений, при которых наблюдалось значение признака меньшее ;

общее число наблюдений (объем выборки).

Очевидно, что относительная частота (частость) события равна .

Статистической функцией распределения случайной величины называется функция, определяющая для каждого значения относительную частоту события

   (3.1)

Сравним статистическую и интегральную функции распределения. Вспомним (теорема Бернулли), что относительная частота события , т.е. стремится по вероятности к вероятности этого события.

Функция  обладает теми же свойствами, что и :

  1.  Значения .
  2.  Эмпирическая функция распределения неубывающая.
  3.  Если наименьшая варианта, то при .
  4.  Если наибольшая варианта, то при .

Пример 2. Построить эмпирическую функцию по данной выборке:

2

6

10

12

18

30

Решение: Найдем объем выборки . Теперь найдем статистическую функцию распределения:

2

6

10

>10

0

12 / 60

30 / 60

1

Представим в аналитическом и графическом виде:

Рис. 3.1. Статистическая функция распределения

Выборочные значения и оценка параметров.

Рассмотрим один из возможных методов (есть и другие) оценивания среднего значения и дисперсии случайной величины по независимым наблюдением:

       (3.2)

 (3.3)

Здесь и – выборочное среднее и выборочная дисперсия соответственно. Индекс в формуле (см. 3.3) указывает на смещённость оценки дисперсии. Наряду с вышеприведенными характеристиками, при обработке результатов наблюдений обычно находят следующие оценки:

  1.   выборочная дисперсия (несмещённая)

 (3.4)

  1.  среднее квадратическое отклонение

       (3.5)

  1.  выборочный коэффициент асимметрии

     (3.6)

  1.  выборочный коэффициент эксцесса

   (3.7)

Для установления качества или "правильности" любой оценки используются свойства (требования) "хороших оценок".

Требования "хороших оценок"

  1.  Несмещённость.

Во-первых, желательно, чтобы математическое ожидание оценки равнялось оцениваемому параметру:

.       (3.8)

Здесь  оценка параметра . Если свойство (3.8) имеет место, то оценка называется несмещённой.

  1.  Эффективность.

Во-вторых, желательно, чтобы среднеквадратическая ошибка данной оценки была наименьшей среди всех возможных оценок, т.е.:

.    (3.9)

Где  исследуемая оценка, а  любая другая оценка. Если это свойство имеет место, то оценка  называется эффективной.

  1.  Состоятельность.

В-третьих, желательно, чтобы оценка сходилась к оцениваемому параметру с вероятностью, стремящейся к единице по мере увеличения размера выборки, т.е. для любого

.    (3.10)

Если выполнено условие (3.10), то оценка называется состоятельной. Из неравенства Чебышева следует, что достаточным для выполнения (3.10) является условие:

   (3.11)

В качестве примера "хорошей оценки" рассмотрим оценку среднего значения (3.2). Математическое ожидание выборочного среднего равно:

 (3.12)

Следовательно, согласно (3.8), оценка  несмещённая.

Среднеквадратическая ошибка выборочного среднего равна:

(3.13)

Поскольку наблюдения независимы, то математическое ожидание членов, содержащих смешанные произведения, равны нулю. Поэтому из (3.13) получим:

(3.14)

Т.о., согласно (3.11) оценка  состоятельная. Можно показать, что эта оценка эффективна.

Рассмотрим оценку дисперсии по формуле (3.3).

(3.15)

Однако

 (3.16)

Поскольку  и , то, подставив в (3.16), получим:

(3.17)

Следовательно, оценка  смещённая.

Хотя оценка (выборочная дисперсия) и является смещённой оценкой, эта оценка состоятельна и эффективна. Из (3.17) понятно, что для получения несмещённой оценки следует взять несколько видоизмененную выборочную дисперсию (3.4).


 

А также другие работы, которые могут Вас заинтересовать

38906. ИЗУЧЕНИЕ ДВИЖЕНИЯ ТЕЛА ОТНОСИТЕЛЬНО ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ 2.74 MB
  Лаборатория Физические основы механики ЛАБОРАТОРНАЯ РАБОТА № ФМ6 ИЗУЧЕНИЕ ДВИЖЕНИЯ ТЕЛА ОТНОСИТЕЛЬНО ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ Составитель: к. ЦЕЛЬ РАБОТЫ: определение периодов колебаний и моментов инерции тел относительно главных осей инерции. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Моментом инерции тела относительно некоторой оси в физике называют величину равную сумме произведений элементарных масс из которых состоит тело на квадраты их расстояний до оси: Проекция момента импульса тела на ось вращения и угловую скорость связаны...
38907. Знакомство с методами измерения физических величин и оценкой погрешностей измерений 264.5 KB
  Лаборатория Физические основы механики ЛАБОРАТОРНАЯ РАБОТА № ФМ0 Знакомство с методами измерения физических величин и оценкой погрешностей измерений Руководство подготовлено доц. ЦЕЛЬ РАБОТЫ: Ознакомиться с прямыми и косвенными измерениями методами обработки результатов измерений. Чтобы найти значение как можно более близкое к истинному нужно проводить большее число измерений и на их основе вычислить среднее арифметическое значение. Чем больше число измерений тем ближе среднее значение к истинному.
38908. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ 612.5 KB
  Лаборатория Физические основы механики ЛАБОРАТОРНАЯ РАБОТА № ФМ1 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Нормоконтроль: Переработано: к. ЦЕЛЬ РАБОТЫ: изучение вращательного движения тела на примере крутильных колебаний. Определение момента инерции твердого тела. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Абсолютно твёрдым телом называется тело которое ни при каких условиях не может деформироваться то есть расстояние между двумя точками или точнее между двумя частицами этого тела остаётся постоянным.
38909. Изучение прецессии лабораторного гироскопа 4.27 MB
  Окружности по которым движутся точки тела лежат в плоскостях перпендикулярных к этой оси. Эти векторы не имеют определённых точек приложения: они могут откладываться из любой точки оси вращения. Вектор направлен вдоль оси вращения в соответствии с правилом правого винта т. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону...
38910. Исследование законов вращательного движения на маятнике Обербека 1.08 MB
  ЦЕЛЬ РАБОТЫ: расчет момента инерции сложного тела исследование зависимости момента инерции от распределения массы внутри твердого тела от величины внешней силы и от ее плеча. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Абсолютно твёрдым телом называется тело которое ни при каких условиях не может деформироваться то есть расстояние между двумя точками или точнее между двумя частицами этого тела остаётся постоянным. При вращении твёрдого тела все его точки движутся по окружности центры которых лежат на одной прямой называемой...