10966

Статистическая (эмпирическая) функция распределения

Лекция

Математика и математический анализ

Статистическая эмпирическая функция распределения Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот частостей. В теории вероятностей под распределением понимают соответствие между возможными з...

Русский

2013-04-03

115.14 KB

30 чел.

Статистическая (эмпирическая) функция распределения

Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот (частостей).

В теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике – соответствие между наблюдаемыми значениями и их частотами, или относительными частотами.

Пример 1. Задана выборка объемом с соответствующими частотами. Необходимо найти частости (относительные частоты).

2

6

12

3

10

7

3/20

10/20

7/20

Контроль:   .

Пусть, исследуется статистическое распределение, частот количественного признака (случайной величины) . Введем обозначение:

число наблюдений, при которых наблюдалось значение признака меньшее ;

общее число наблюдений (объем выборки).

Очевидно, что относительная частота (частость) события равна .

Статистической функцией распределения случайной величины называется функция, определяющая для каждого значения относительную частоту события

   (3.1)

Сравним статистическую и интегральную функции распределения. Вспомним (теорема Бернулли), что относительная частота события , т.е. стремится по вероятности к вероятности этого события.

Функция  обладает теми же свойствами, что и :

  1.  Значения .
  2.  Эмпирическая функция распределения неубывающая.
  3.  Если наименьшая варианта, то при .
  4.  Если наибольшая варианта, то при .

Пример 2. Построить эмпирическую функцию по данной выборке:

2

6

10

12

18

30

Решение: Найдем объем выборки . Теперь найдем статистическую функцию распределения:

2

6

10

>10

0

12 / 60

30 / 60

1

Представим в аналитическом и графическом виде:

Рис. 3.1. Статистическая функция распределения

Выборочные значения и оценка параметров.

Рассмотрим один из возможных методов (есть и другие) оценивания среднего значения и дисперсии случайной величины по независимым наблюдением:

       (3.2)

 (3.3)

Здесь и – выборочное среднее и выборочная дисперсия соответственно. Индекс в формуле (см. 3.3) указывает на смещённость оценки дисперсии. Наряду с вышеприведенными характеристиками, при обработке результатов наблюдений обычно находят следующие оценки:

  1.   выборочная дисперсия (несмещённая)

 (3.4)

  1.  среднее квадратическое отклонение

       (3.5)

  1.  выборочный коэффициент асимметрии

     (3.6)

  1.  выборочный коэффициент эксцесса

   (3.7)

Для установления качества или "правильности" любой оценки используются свойства (требования) "хороших оценок".

Требования "хороших оценок"

  1.  Несмещённость.

Во-первых, желательно, чтобы математическое ожидание оценки равнялось оцениваемому параметру:

.       (3.8)

Здесь  оценка параметра . Если свойство (3.8) имеет место, то оценка называется несмещённой.

  1.  Эффективность.

Во-вторых, желательно, чтобы среднеквадратическая ошибка данной оценки была наименьшей среди всех возможных оценок, т.е.:

.    (3.9)

Где  исследуемая оценка, а  любая другая оценка. Если это свойство имеет место, то оценка  называется эффективной.

  1.  Состоятельность.

В-третьих, желательно, чтобы оценка сходилась к оцениваемому параметру с вероятностью, стремящейся к единице по мере увеличения размера выборки, т.е. для любого

.    (3.10)

Если выполнено условие (3.10), то оценка называется состоятельной. Из неравенства Чебышева следует, что достаточным для выполнения (3.10) является условие:

   (3.11)

В качестве примера "хорошей оценки" рассмотрим оценку среднего значения (3.2). Математическое ожидание выборочного среднего равно:

 (3.12)

Следовательно, согласно (3.8), оценка  несмещённая.

Среднеквадратическая ошибка выборочного среднего равна:

(3.13)

Поскольку наблюдения независимы, то математическое ожидание членов, содержащих смешанные произведения, равны нулю. Поэтому из (3.13) получим:

(3.14)

Т.о., согласно (3.11) оценка  состоятельная. Можно показать, что эта оценка эффективна.

Рассмотрим оценку дисперсии по формуле (3.3).

(3.15)

Однако

 (3.16)

Поскольку  и , то, подставив в (3.16), получим:

(3.17)

Следовательно, оценка  смещённая.

Хотя оценка (выборочная дисперсия) и является смещённой оценкой, эта оценка состоятельна и эффективна. Из (3.17) понятно, что для получения несмещённой оценки следует взять несколько видоизмененную выборочную дисперсию (3.4).


 

А также другие работы, которые могут Вас заинтересовать

37832. Решение систем линейных алгебраических уравнений методом Гаусса с выбором главного элемента 207.5 KB
  Метод Гаусса К необходимости решения систем линейных алгебраических уравнений СЛАУ приводят многие прикладные задачи физики радиофизики электроники других областей науки и техники. Из прямых методов популярным у вычислителей является метод Гаусса исключения переменных с выбором главного максимального по модулю элемента в столбце.1 Процесс ее решения методом Гаусса делится на два этапа называемых соответственно прямым и обратным ходом.
37836. РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ НЬЮТОНА 247 KB
  Метод Ньютона Многие прикладные задачи радиофизики и электроники требуют решения систем нелинейных алгебраических уравнений СНАУ или в векторной форме 2. Для численного решения таких систем используются итерационные методы. Построение k1го приближения в этой схеме осуществляется посредством решения линейной системы 2.3 при этом вектор поправки находится путем решения системы линейных алгебраических уравнений 2.
37837. Педагогические способности учителя 132 KB
  Способности - индивидуально-психологические особенности человека, проявляющиеся в деятельности и являющиеся условием успешности ее выполнения. От способностей зависит скорость, глубина, легкость и прочность процесса овладения знаниями, умениями и навыками, но сами они к ним не сводятся.