1097

Преобразование Фурье

Лекция

Математика и математический анализ

Аналоговое преобразование Фурье. Дискретное преобразование Фурье. Алгоритм быстрого преобразования Фурье с прореживанием по времени. Алгоритм быстрого преобразования Фурье с прореживанием по частоте. Метод двоичной инверсии.

Русский

2013-01-06

225 KB

188 чел.

лекция

Преобразование Фурье

Рассматриваются следующие вопросы:

- аналоговое преобразование Фурье

- дискретное преобразование Фурье

- алгоритм быстрого преобразования Фурье с прореживанием по времени

- алгоритм быстрого преобразования Фурье с прореживанием по частоте

- метод двоичной инверсии

3.1. Аналоговое преобразование Фурье

При обработке акустических сигналов важную роль играет анализ их частотно-амплитудного представления (спектра). Наиболее распространенным методом выделения спектра сигнала является преобразование Фурье [5,6].

Аналоговый сигнал  переводится в спектральное представление с помощью прямого аналогового преобразования Фурье в виде (3.1).

(3.1)

Обратное аналоговое преобразование Фурье осуществляется      согласно (3.2)

(3.2)

Спектр аналогового сигнала (3.3) представляет собой совокупность гармонических колебаний (гармоник), характеризующихся амплитудой , начальной фазой  и угловой частотой w.

(3.3)

Поскольку современные ЭВМ представляют собой цифровые устройства, то вместо аналогового преобразования используется дискретное.

3.2. Дискретное преобразование Фурье

Прямое ДПФ конечной последовательности  {x(n)}, , позволяет получить спектр в виде  

,     (3.4)

Аналогично аналоговому сигналу, спектр дискретного сигнала представляет собой совокупность гармонических колебаний (гармоник), характеризующихся амплитудой (3.5), начальной фазой (3.6) и угловой частотой (3.7).

,  (3.5)

, (3.6)

,   (3.7)

где ,  - коэффициенты ряда Фурье, .

Графическое представление, наглядно интерпретирующее коэффициенты ряда Фурье принято называть спектральной диаграммой периодического сигнала. Различают амплитудные и фазовые диаграммы дискретного сигнала (рис.3.1).

               а)                                                 б)

Рис. 3.1. Спектральные диаграммы сигнала x(n):

а) - амплитудная; б) - фазовая

Обратное ДПФ выглядит следующим образом

,  (3.8)

Прямое ДПФ можно представить в более удобной форме в виде

, , (3.9)

где . Легко показать, что  является периодической последовательностью с периодом N, т.е.

 

Обратное ДПФ выглядит следующим образом:

,  (3.10)

Ниже будет показано, что периодичность  является одним из ключевых моментов БПФ. Часто периодичность  подчеркивают тем, что  вместо   записывают .

При непосредственных вычислениях  заменяется на . Используя формулу (3.4), можно записать

 (3.11)

,

Из формулы (3.8) следует, что непосредственное вычисление дискретного преобразования Фурье последовательности  x(n) требует  умножений (или сложений) комплексных чисел.

Таким образом, для достаточно больших N  (порядка 1024) прямое вычисление ДПФ требует выполнения чрезмерного количества вычислительных операций.

Для более эффективного вычисления ДПФ используются алгоритмы быстрого преобразования Фурье. Эти алгоритмы сравнимы по эффективности и образуют следующие классы -  алгоритмы БПФ с прореживанием по времени и алгоритмы БПФ с прореживанием по частоте.

3.3. Алгоритм быстрого преобразования Фурье с прореживанием по времени

Основная идея БПФ с прореживанием по времени состоит в том, чтобы разбить исходную N-точечную последовательность x(n) на две более короткие последовательности, ДПФ которых могут быть скомбинированы таким образом, чтобы получилось ДПФ исходной N-точечной последовательности. Так, например, если N  четное, а исходная N-точечная последовательность разбита на две N/2-точечные последовательности, то для вычисления искомого N-точечного ДПФ потребуется порядка  2(N/2)2=N2/2  комплексных умножений, т.е. вдвое меньше по сравнению с прямым вычислением. Здесь множитель (N/2)2 дает число умножений, необходимое для прямого вычисления N/2-точечного ДПФ, а множитель 2 соответствует двум ДПФ, которые должны быть вычислены. Эту операцию можно повторить, вычисляя вместо N/2-точечного ДПФ два N/4-точечных ДПФ (предполагая, что N/2 четное) и сокращая тем самым объем вычислений еще в два раза.

Проиллюстрируем описанную методику для N-точечной последовательности {x(n)}, считая, что N равно степени 2. Введем две N/2-точечные последовательности  { x1(n) } и { x2(n) }  из четных и нечетных членов x(n) соответственно, т.е.

x1(n) = x(2n),      ,

x2(n) = x(2n+1),  .

N-точечное ДПФ последовательности  {x(n)}  можно записать как

(3.12)

             четные              нечетные

,    

С учетом того, что

(3.13)

перепишем выражение (3.12) в виде

(3.14)

,   ,  (3.15)

где X1(k) и X2(k) равны N/2-точечным ДПФ последовательностей  x1(n) и x2(n).

Из формулы (3.15) следует, что N-точечное ДПФ X(k) может быть разложено на два N/2-точечных ДПФ, результаты которых объединяются согласно (3.15). Таким образом, БПФ обеспечивает рекуррентное вычисление всех 2-точечных, затем 4-точечных, …, N-точечных ДПФ.

Общее число комплексных умножений и сложений равно , что значительно меньше  (количество комплексных умножений и сложений без использования БПФ).

3.4. Алгоритм быстрого преобразования Фурье с прореживанием по частоте

В данном алгоритме исходная последовательность {x(n)} также разбивается на две последовательности {x1(n)} и {x2(n)}, содержащие по N/2 отсчетов, но в данном случае в последовательность {x1(n)} записываются не четные отсчеты, а все отсчеты, расположенные в интервале , а в последовательность {x2(n)} – не нечетные отсчеты, а все отсчеты, расположенные в интервале , т.е.

,   ;

,   .

В этом случае ДПФ последовательности {x(n)}  можно записать в виде

(3.16)

             четные                    нечетные

,    

Учитывая, что , получим

 (3.17)

Запишем выражения отдельно для четных и нечетных частотных отсчетов

, (3.18)

, (3.19)

Общее число комплексных умножений и сложений равно , что значительно меньше  (количество комплексных умножений и сложений без использования БПФ).

3.5. Метод двоичной инверсии

Особенностью алгоритмов БПФ является перестановка элементов входной последовательности. Перед вычислением (3.15) или (3.18)-(3.19) используется двоично-инверсный метод (рис.3.2). Как видно из алгоритма, исходный номер k преобразуется в двоично-инверсный номер m. Четность проверяется отсутствием единицы в самом младшем разряде. Для ускорения работы алгоритма операции  2*m  и  [k/2] заменяются сдвигами на единицу влево или вправо соответственно.

Преобразование линейной последовательности в двоично-инверсную для 8 элементов представлено в табл.3.1.

Таблица 3.1

Пример метода двоичной инверсии

Индекс в линейной последовательности

Двоичное представление

Двоичная инверсия

Номер в двоично-инверсной последовательности

0

000

000

0

1

001

100

4

2

010

010

2

3

011

110

6

4

100

001

1

5

101

101

5

6

110

011

3

7

111

111

7

3.6 Численное исследование звуков речи и оборудования посредством преобразования Фурье

В работах [1, 38] было проведено численное исследование. На рис.3.3 представлен звук «а» в амплитудно-временном представлении, а на рис.3.4 – в амплитудно-частотном. На рис.3.5 представлен звук «ш» в амплитудно-временном представлении, а на рис.3.6 – в амплитудно-частотном. Как видно из рис.3.4 и 3.6, звук «а» наиболее ярко выделяется в частотном диапазоне до 2000 Гц, а звук «ш» - в частотном диапазоне свыше 2000 Гц.

Рис. 3.2. Двоично-ннверсный метод

Рис. 3.3. Звук «а» в амплитудно-временном представлении

Рис. 3.4. Звук «а» в амплитудно-частотном представлении

Рис. 3.5. Звук «ш» в амплитудно-временном представлении

Рис. 3.6. Звук «ш» в амплитудно-частотном представлении

Другой областью применения преобразования Фурье является исследование дефектов оборудования. На рис.3.7-3.8 приведены: временное представление акустического сигнала, полученного от подшипника турбовентилятора (рис.3.7); амплитуда спектра сигнала (рис.3.8); преобразованная амплитуда спектра сигнала (выделены частоты, связанные с возможными дефектами, характерными для этого класса подшипника) (рис.3.9).

Согласно рис.3.9, амплитуда частоты 38 Гц (первая гармоника частоты вращения ротора) превышает допустимый порог.

Рис. 3.7. Временное представление акустического сигнала

Рис. 3.8. Амплитуда спектра сигнала

Рис. 3.9. Преобразованная амплитуда спектра сигнала


 

А также другие работы, которые могут Вас заинтересовать

79574. ALBERT EINSTEIN 192.53 KB
  LBERT EINSTEIN lbert Einstein wellknown Germn physicist nd mthemticin ws born in Germny on Mrch 14 1879. t the ge of 21 fter four yers of university study lbert Einstein got job s clerk in n office. Einstein expressed his theory in the eqution E = mc2 roughly tht energy equls mss times the squre of the speed of light. Which institute did he tech in Wht lbortory did he do his reserch in Einstein\'s fme mong scientists grew slowly but surely.
79575. MACHINE TOOLS — A MEASURE OF MANS PROGRESS 293.76 KB
  MCHINE TOOLS MESURE OF MN\'S PROGRESS The vriety nd combintions of mchine tools tody re unlimited. The min mchine tool of such workshop is the multipurpose lthe. Wht is lthe It is powerdriven mchine with specil tools which cn cut or form metl prts. Technologicl progress improves ccurcy of mchine tools.
79576. IN THE CHEMICAL LABORATORY 606.12 KB
  Nerly in the middle there stnds Bunsen burner with flsk over it. During n experiment the Bunsen burner is connected with the min gs line by rubber tube. The flme of the burner is being regulted by mens of tp. From time to time Brbr looks up t the solution which is boiling on the Bunsen burner.
79577. RADIO AND TV MARCH AHEAD 301.2 KB
  RDIO ND TV MRCH HED More thn 100 yers pssed since the dy when the Russin scientist lexnder Popov demonstrted his storm indictor which ws the prototype of modern rdio receivers. Gret progress hs been mde in rdio engineering rdio communictions rdio brodcstings nd television since tht time. In the modern world rdio nd television ply n importnt role s mss medi of informtion nd s mens of...
79578. BETTER METALS ARE VITAL TO TECHNOLOGICAL PROGRESS 27.15 KB
  Since the erliest dys the preprtion of metls for mechnicl use ws vitl to the dvnce of civiliztion. Tody we know more thn sixtyfive metls vilble in lrge enough quntities to be used in industry. Metls re mostly solids t ordinry tempertures nd possess comprtively high melting points with the exception of mercury. The Erth contins lrge number of metls useful to mn.
79579. SOURCES OF POWER 28.42 KB
  SOURCES OF POWER The industril progress of mnkind is bsed on power: power for industril plnts mchines heting nd lighting systems trnsport communiction. In fct one cn hrdly find sphere where power is not required. t present most of the power required is obtined minly from two sources. The second wy of producing electricity is by mens of genertors tht get their power from stem or wter turbines.
79580. PULKOVO - RUSSIAS MAIN OBSERVATORY 175.09 KB
  Two gret observtories. Greenwich nd Pulkovo occupy leding plce mong the observtories of the world. Pulkovo is situted in hilly re some kilometres from St. You cnt get to Pulkovo by trin: when the rilwy ws being built the stronomers specilly sked tht it should be kepi severl kilometres wy so tht there should be no vibrtion to ffect the sensitive instruments.
79581. FUNDAMENTALS OF THEORY AND PRACTICE OF TRANSLATION 1.44 MB
  Тhe educational material is grouped in topical arrangements and staffed within the case modules’ framework representing the set of submodules enabling one to familiarize the trainees with the theoretical information and to consolidate it in slideshow illustrations, assignments, exercises.
79582. Эмпирическое исследование особенности развития мыслительных процессов детей младшего школьного возраста с задержкой психического развития 2.43 MB
  Целью эмпирического исследования в данной выпускной квалификационной работе является анализ особенностей мышления у детей с задержкой психического развития младшего школьного возраста, и разработать рекомендации для общеобразовательных учреждений о коррекционной работе с детьми с задержкой психического развития.