10970

Различие между двумя выборочными средними

Лекция

Математика и математический анализ

Различие между двумя выборочными средними Пусть дана выборка из значений нормально распределённой СВ и значений нормально распределенной СВ причем Необходимо проверить гипотезу против гипотезы . Заметим что дисперсии и нам известны. Кроме того предположени...

Русский

2013-04-03

173.29 KB

15 чел.

Различие между двумя выборочными средними

Пусть дана выборка из значений нормально распределённой СВ и значений нормально распределенной СВ , причем

Необходимо проверить гипотезу , против гипотезы .

Заметим, что дисперсии и нам известны. Кроме того, предположение относительно нормальности распределения указанных величин не входит в проверяемую гипотезу.

Как было показано раньше, выборочные средние и являются эффективными и несмещенными оценками соответствующих математических ожиданий с соответствующими дисперсиями: .

В качестве статистики (оценки) возьмем:

   (7.1)

В (7.1) мы воспользовались свойством, дисперсия разности равна сумме дисперсий. Статистика , и теперь легко проверить, сравнив с табличными значениями, значимо ли отличается от нуля.

Если дисперсии и неизвестны, то можно воспользоваться объединённой оценкой , полученной из обеих выборок:

   (7.2)

В этом случае мы используем статистику c  степенями свободы:

 (7.3)

Вспомним, что статистика имеет распределение Стьюдента с степенями свободы.

Отметим, что для статистики и можно рассматривать, как двусторонние, так и односторонние критерии.

Пример 7.1. СРАВНЕНИЕ ДВУХ ВЫБОРОЧНЫХ СРЕДНИХ

Имеется 13 мотков пряжи, которые надо исследовать, не изменяются ли при намокании её способность к вытягиванию. Шесть произвольных мотков подвергли испытанию на растяжение, для чего подвешивается груз фиксированной величины. Относительное удлинение мотков (СВ ) приведено в таблице:

1

2

3

4

5

6

12.3

13.7

10.4

11.4

14.9

12.6

Оставшиеся семь мотков были тщательно намочены и подвергнуты испытаниям с теми же грузами:

1

2

3

4

5

6

7

15.7

10.3

12.6

14.5

12.6

13.8

11.9

Подсчитаем:

Требуется проверить, случайно ли полученное различие?

Для этого выдвинем гипотезы . В связи с тем, что дисперсия неизвестна, вычислим объединенную выборочную дисперсию (7.2):

.

Подставим полученные значения в (7.3):

По таблицам распределения Стьюдента для одиннадцати степеней свободы определяем, что вероятность того, что отличается от нулевого среднего в любую сторону более чем на равна 0.6. Поэтому нет оснований считать полученный результат необычным. Т.е. обнаруженная разница незначима, и верна гипотеза .

Критерий Фишера

Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону. Гипотезы о дисперсиях возникают довольно часто, так как дисперсия характеризует такие исключительно важные показатели, как точность машин, приборов, технологических процессов, степень однородности совокупностей, риск, связанный с отклонением доходности активов от ожидаемого уровня, и т.д.

Сформулируем задачу. Пусть имеются две нормально распределенные совокупности, дисперсии которых равны  и . Необходимо проверить нулевую гипотезу о равенстве дисперсий, т.е. : относительно конкурирующей  или .

Для проверки гипотезы  из этих совокупностей взяты две независимые выборки объемом  и . Так как оценки дисперсий  и  нам неизвестны, воспользуемся несмещенными выборочными оценками дисперсий  и .

Тогда при справедливости гипотезы : в качестве оценки  можно взять те же дисперсии  и , рассчитанные по элементам первой и второй выборок.

Известно, что выборочные характеристики  и  имеют распределение  соответственно с  и  степенями свободы, а их отношение  имеет  распределение
Фишера – Снедекора с
 и  степенями свободы. Следовательно, случайная величина , определяемая отношением:

,    (7.4)

т.е. отношение несмещенных выборочных дисперсий имеет
 распределение Фишера – Снедекора с   и  степенями свободы.

Очевидно, что при равенстве дисперсий величина критерия будет равна единице. В остальных случаях она будет больше (меньше) единицы. При формировании критерия отклонения (принятия) гипотезы  следует учесть, что распределение статистики  (в отличие от нормального или распределения Стьюдента является несимметричным.)

Критерий Фишера  – двусторонний критерий, и нулевая гипотеза принимается (отвергается альтернативная гипотеза ) если . Здесь  и , где – объем первой и второй выборки соответственно.

На рис. 7.1 приведено распределение . При проверке одностороннего критерия гипотеза  отвергается в пользу альтернативной гипотезы  если  – левосторонняя критическая область (рис. 7.1а), либо если  – правосторонняя критическая область (рис. 7.1б), либо если  или  – в случае двусторонней критической области (рис. 7.1в).

Рис. 7.1 Критические области распределения Фишера – Снедекора.

Замечание. Для  критерия доказана справедливость соотношения:

.   (7.5)

Пример 7.2. СРАВНЕНИЕ ДИСПЕРСИЙ ДВУХ ВЫБОРОК

Пусть поставлена задача, сравнить эффективности обучения двух групп студентов по разным методикам. Успеваемость студентов – случайные величины  и  соответственно, подчинена нормальному закону распределению. В первой группе обучалось  студентов, а во второй – . Качество обучения (эффективность) характеризуется дисперсией. По данным двух выборок (групп) рассчитаны выборочные несмещенные дисперсии  и . Задавая уровень значимости , выясним, можно ли считать эффективности обучения двух методик одинаковыми.

Выдвинем нулевую гипотезу , т.е. эффективности обучения двух различных методик – одинаковы. В качестве альтернативной гипотезы рассмотрим .

Вычислим  (в числителе должна быть большая дисперсия), . По таблицам (STATISTICAProbability Distribution Calculator) находим критическое значение (правосторонняя область см. рис. 7.1б) , которое меньше вычисленного. Следовательно, нулевая гипотеза должна быть отвергнута в пользу альтернативы  . Таким образом, эффективность второй методики значительно выше (дисперсия меньше), чем первой.


 

А также другие работы, которые могут Вас заинтересовать

71668. Культурология 2.18 MB
  Данный учебник содержит изложение основного теоретического и историко-культурного материала по дисциплине «Культурология» в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования. Структурно он разделен на два раздела: теория культуры и история культуры.
71669. СХЕМОТЕХНИКА: ЛАБОРАТОРНЫЙ ПРАКТИКУМ 458 KB
  Приведены лабораторные работы по курсу «Схемотехника» с использованием программы Electronics Workbench. Изложен краткий теоретический материал разработки моделей в программе. Рассмотрены методические примеры и представлены задания на самостоятельную работу.
71670. Общая энергетика: Учебное пособие 3.18 MB
  В учебном пособии излагаются общие вопросы энергетических систем теоретические основы преобразования различных видов энергии тепловой ядерной гидравлической солнечной ветровой геотермальной и т. Рассматриваются технологические процессы и различные схемы преобразования...
71671. ПОСОБИЕ ПО ПРАКТИЧЕСКОЙ ФОНЕТИКЕ 403 KB
  Артикуляция (Articulation) – уклад органов речи при произнесении того или иного звука. Палатализация (Palatalization) – смягчение согласного под влиянием следующего за ним гласного переднего ряда. Палатализация создаётся поднятием средней части языка во время произнесения...
71674. ОСНОВЫ ИЗМЕРЕНИЙ 836 KB
  Материал изложен с учетом требований программ дисциплин по которым осуществляется подготовка инженеров-метрологов в Белорусском государственном университете информатики и радиоэлектроники и охватывает ряд вопросов касающихся основ измерений.
71675. Метрология и измерения: Учебно-методическое пособие 3.97 MB
  Учебно-методическое пособие Метрология и измерения предназначено для индивидуальной работы студентов изучающих курсы измерений. Обработка результатов измерений с однократными наблюдениями Обработка результатов многократных наблюдений при прямых измерениях.