10971

Непараметрические гипотезы. Критерий согласия хи-квадрат

Лекция

Математика и математический анализ

Непараметрические гипотезы Критерий согласия хиквадрат Одной из важнейших задач математической статистики является установление теоретического закона распределения случайной величины характеризующего изучаемый признак по опытному эмпирическому распределению...

Русский

2013-04-03

455.84 KB

15 чел.

Непараметрические гипотезы

Критерий согласия хи-квадрат

Одной из важнейших задач математической статистики является установление теоретического закона распределения случайной величины, характеризующего изучаемый признак по опытному (эмпирическому распределению), представляющему вариационный ряд.

Для решения этой задачи необходимо определить вид и параметры закона распределения.

Предположения о виде закона распределения может быть выдвинуто исходя из теоретических предпосылок, опыта предшествующих аналогичных исследований, и, наконец, на основании графического изображения эмпирического распределения.

Параметры распределения, как правило, неизвестны, поэтому их заменяют выборочными оценками (несмещенными, эффективными и состоятельными).

Как бы хорошо ни был подобран теоретический закон распределения, между эмпирическим и теоретическим распределениями неизбежны расхождения. Естественно возникает вопрос, обусловлены ли эти расхождения только случайными факторами, связанными с ограниченным числом наблюдений (объемом выборки), или они являются существенными и обусловлены неудачным выбором теоретического закона распределения. Для ответа на этот вопрос и служат критерии согласия.

Для поверки эквивалентности плотности вероятности выборочных данных некоторой гипотетической плотности часто используется особый критерий, называемый критерием согласия хи-квадрат. Общая идея критерия заключается в использовании в качестве меры расхождения наблюдаемой плотности вероятности и гипотетической плотности некоторой статистики (оценки), приближенно подчиняющейся распределению хи-квадрат . Затем гипотеза относительно их эквивалентности проверяется путем изучения выборочного распределения этой статистики.

Пусть дана выборка из независимых наблюдений случайной величины с плотностью . Сгруппируем наблюдений по
интервалам, называемым интервалами группировки, которые в совокупности образуют гистограмму частот. Число наблюдений, попавших в й интервал, называется наблюденной частотой го интервала; обозначим её . Число наблюдений, которые могли бы попасть в й интервал, если бы истинной плотностью СВ была , называется ожидаемой частотой го интервала .

Расхождение между наблюденной и ожидаемой частотами в каждом интервале равно .

Для того чтобы измерить общее расхождение по всем интервалам, нормируем квадраты расхождений соответствующими ожидаемыми частотами и просуммируем их. В результате получим выборочную статистику (оценку):

(8.1)

Показано, что распределение приближенно совпадает с распределением. Число степеней свободы в этом случае равно (число интервалов группировки) минус число различных независимых линейных ограничений, наложенных на наблюдения. Рассмотрим эти ограничения подробнее:

  1.  Ограничение связано с тем, что частота в последнем интервале группировки полностью определяется частотами всех остальных интервалов, т.е. не является независимой величиной.
  2.  Если гипотетическая (предполагаемая) плотность – нормальная, с неизвестным математическим ожиданием и дисперсией, то появятся два дополнительных ограничения, поскольку для подбора нормальной плотности необходимо оценить два параметра .

Естественно, при проверке нормальности распределения . Для показательного распределения . Тогда .

После выбора числа степеней свободы величины проверка гипотезы производится следующим образом:

  1.  выдвигается гипотеза случайная величина имеет плотность распределения ;
  2.  группируем выборочные значения по интервалам и вычисляем ожидаемую частоту для каждого интервала в предположении, что ;
  3.  по формуле (8.1) находим значение ;
  4.  поскольку любое отклонение от вызовет увеличение , то используем односторонний критерий (см. рис. 8.1). Тогда область принятия гипотезы имеет вид:
  5.  если выборочная оценка превышает , то гипотеза о том, что , отвергается с уровнем значимости ;


Рис. 8.1 Критическая область критерия Пирсона ().

ПРИМЕЧАНИЯ:

1). Обычно ширину интервала группировки выбирают: .

2). В качестве первого и последнего интервалов выбирают интервалы, простирающиеся соответственно до −∞ и +∞. При этом должно выполняться условие . Если это условие не выполняется, то объединяем соседние интервалы.

Пример 1. ПРОВЕРКА НОРМАЛЬНОСТИ РАСПРЕДЕЛЕНИЯ

Имеется выборка из независимых наблюдений. Необходимо проверить гипотезу о нормальности выборочного распределения с помощью критерия Пирсона с уровнем значимости . Для удобства выборочные значения упорядочены по возрастанию и сведены в таблицу:

Таблица 1 Исходная упорядоченная по возрастанию выборка

-7.6

-3.8

-2.5

-1.6

-0.7

0.2

1.1

2.0

3.4

4.6

-6.9

-3.8

-2.5

-1.6

-0.7

0.2

1.1

2.1

3.5

4.8

-6.6

-3.7

-2.4

-1.6

-0.6

0.2

1.2

2.3

3.5

4.8

-6.4

-3.6

-2.3

-1.5

-0.6

0.3

1.2

2.3

3.6

4.9

-6.2

-3.5

-2.3

-1.5

-0.6

0.3

1.3

2.3

3.6

5.0

-6.1

-3.4

-2.3

-1.4

-0.5

0.3

1.3

2.4

3.6

5.2

-6.0

-3.4

-2.2

-1.4

-0.4

0.4

1.3

2.4

3.7

5.3

-5.7

-3.4

-2.2

-1.2

-0.4

0.4

1.4

2.5

3.7

5.4

-5.6

-3.3

-2.1

-1.2

-0.4

0.5

1.5

2.5

3.7

5.6

-5.5

-3.2

-2.1

-1.2

-0.3

0.5

1.5

2.6

3.7

5.9

-5.4

-3.2

-2.0

-1.1

-0.3

0.6

1.6

2.6

3.8

6.1

-5.2

-3.1

-2.0

-1.1

-0.2

0.6

1.6

2.6

3.8

6.3

-4.8

-3.0

-1.9

-1.0

-0.2

0.7

1.6

2.7

3.9

6.3

-4.6

-3.0

-1.9

-1.0

-0.2

0.8

1.7

2.8

4.0

6.5

-4.4

-2.9

-1.8

-1.0

-0.1

0.9

1.8

2.8

4.2

6.9

-4.4

-2.9

-1.8

-0.9

0.0

0.9

1.8

2.9

4.2

7.1

-4.3

-2.9

-1.8

-0.9

0.0

1.0

1.8

3.1

4.3

7.2

-4.1

-2.7

-1.7

-0.8

0.1

1.0

1.9

3.2

4.3

7.4

-4.0

-2.6

-1.7

-0.8

0.1

1.1

1.9

3.2

4..4

7.9

-3.8

-2.6

-1.6

-0.7

0.2

1.1

2.0

3.3

4.4

9.0

Решение:

  1.  Вначале вычислим выборочные оценки .
  2.  Сгруппируем имеющиеся данные, принимая ширину интервала равной .
  3.  Квантили нормального (гауссова) распределения возьмем из таблицы, не забывая, что первый интервал начинается на , а последний – заканчивается на . Из таблицы определим вероятности попасть в соответствующий интервал. Полученные результаты сведем в таблицу:

Таблица 2 Результаты расчетов

1

-2.0

-6.36

0.0228

4.5

4

0.5

0.06

2

-1.6

-5.04

0.0320

6.4

8

1.6

0.40

3

-1.2

-3.72

0.0603

12.1

10

2.1

0.36

4

-0.8

-2.40

0.0968

19.4

21

1.6

0.13

5

-0.4

-1.08

0.1327

26.5

29

2.5

0.24

6

0

0.24

0.1554

31.1

31

0.1

0.00

7

0.4

1.56

0.1554

31.1

27

4.1

0.54

8

0.8

2.88

0.1327

26.5

25

1.5

0.08

9

1.2

4.20

0.0968

19.4

20

0.6

0.02

10

1.6

5.52

0.0603

12.1

13

0.9

0.07

11

2.0

6.84

0.0320

6.4

6

0.4

0.03

12

0.0228

4.5

6

1.5

0.50

  1.  Как видно из таблицы, и больше трех. В данном случае число степеней свободы равно , а величина . По таблице распределения хи-квадрат найдем уровень значимости Т.к. , следовательно, гипотеза о нормальности принимается с уровнем значимости .

Критерий Колмогорова.

При анализе выборок малого объема невозможно применить критерий (группирование данных некорректно). В этом случае часто используется критерий Колмогорова, в котором в качестве меры расхождения между теоретическим и эмпирическим распределениями рассматривают максимальное значение абсолютной величины разности между эмпирической функцией распределения и соответствующей теоретической функцией распределения:

.

(8.2)

Оценка  называется статистикой критерия Колмогорова.

Доказано, что какова бы ни была функция распределения непрерывной случайной величины , при неограниченном увеличении числа наблюдений вероятность неравенства стремится к пределу

.

(8.3)

Задавая уровень значимости , из соотношения

(8.4)

можно найти соответствующее критическое значение .

Схема применения критерия Колмогорова

  1.  Строятся эмпирическая функция распределения и предполагаемая теоретическая функция распределения.
  2.  Определяется мера расхождения между теоретическим и эмпирическим распределением по формуле (8.2) и вычисляется величина

.

(8.4)

  1.  Если вычисленное значение окажется больше критического , определенного на уровне значимости , то нулевая гипотеза о том, что случайная величина имеет заданный закон распределения, отвергается (односторонний критерий). Если , то считают, что гипотеза не противоречит опытным данным.

Замечание

Можно отметить, что решение подобных задач можно было бы найти с помощью критерия . Потенциальное преимущества критерия Колмогорова в том, что он не требует группирования данных (с неизбежной потерей информации), а дает возможность рассматривать индивидуальные наблюдаемые значения. Этот критерий можно успешно применять для малых выборок. Считается, что его мощность, вообще говоря, выше, чем у критерия .

Пример 2. ПРОВЕРКА НОРМАЛЬНОСТИ РАСПРЕДЕЛЕНИЯ

Получена случайная выборка объема . Построим вариационный ряд и эмпирическую функцию распределения:

-1.0

-0.6

0.2

1.3

2.1

3.0

> 3

1 \ 6

1 \ 6

1 \ 6

1 \ 6

1 \ 6

1 \ 6

0

1 \ 6

2 \ 6

3 \ 6

4 \ 6

5 \ 6

1

Проверим гипотезу, что эти наблюдения образуют случайную выборку из распределения с уровнем значимости . Затем мы можем определить графически либо аналитически, причем эти значения должны появиться в точке , соответствующей одной из наблюдаемых величин. С этой целью необходимо вычислить пары величин и
(рис. 8.2) для каждого значения выборки.

Рис. 8.2 Мера расхождения в точке наблюдения .

Для вычисления вспомним: , где - функция стандартного нормального распределения. Результаты всех вычислений представим в виде таблицы:

-1.0

0.1667

0.0228

0.1439

0.0228

-0.6

0.3333

0.0548

0.2785

0.1119

0.2

0.5

0.2119

0.2881

0.1214

1.3

0.6667

0.6179

0.0488

0.1179

2.1

0.8333

0.8643

0.0310

0.1976

3.0

1.0000

0.9772

0.0228

0.1439

Из таблицы результатов следует: . Из статистических таблиц получим . Поскольку , то принимается гипотеза , т.е. можно считать, что данные подчиняются распределению .


 

А также другие работы, которые могут Вас заинтересовать

37671. Уравнения гиперболического типа 21 KB
  Простейшие задачи, приводящиеся к уравнению гиперболического типа. Уравнение колебаний неограниченной струны. Постановка краевых задач для уравнений описывающих колебательный процесс. Теорема единственности. Теорема устойчивости.
37672. Основные направления улучшения финансового состояния угольного предприятия 1.79 MB
  Анализ использования трудовых ресурсов, производительности труда и расходов на заработную плату. Анализ себестоимости продукции. Анализ состояния и использования основных фондов. Анализ финансовых результатов. Анализ финансового состояния. Значение финансового анализа предприятия. Информационное обеспечение финансовой деятельности предприятия...
37673. АТОМНІ ЕЛЕКТРИЧНІ СТАНЦІЇ 32.5 KB
  АТОМНІ ЕЛЕКТРИЧНІ СТАНЦІЇ Особливості експлуатації АЕС обумовлені специфікою їх технологічної схеми. Однією з особливостей сучасних паротурбінних АЕС є їх робота на насиченому та слабо перегрітому парі з порівняно невисокими тисками пари перед турбіною 65 МПа. На сучасних АЕС застосовуються двоконтурні з реакторами води під тиском ВВЕР та одноконтурні з ―киплячими реакторами РБМК теплові схеми. В теплових схемах АЕС відсутні пароохолодники в регенеративних підігрівниках.
37675. ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ ЛАМП 48.5 KB
  Важнейшей характеристикой диода является зависимость силы тока текущего через лампу анодного тока от разности потенциалов между катодом и анодом анодного напряжения. Анодный ток зависит от анодного напряжения и от температуры катода. При постоянной температуре катода анодный ток 1д возрастает с увеличением анодного напряжения IIа. Поскольку ме ханизм возникновения электрического тока в этом случае отличается от механизма возникновения тока в проводниках то зависимость анодного тока от анодного напряжения не описывается законом Ома.
37676. Морфологія і анатомія генеративних органів 257.5 KB
  Морфологія і анатомія бруньок винограду. Вивчити типи бруньок винограду їх утворення розвиток морфологічну та анатомічну будову пасинкової бруньки і зимуючого вічка. Морфологія і анатомія бруньок винограду. У більшості сортів європейськоазіатського винограду порослеві пагони і вовчки безплідні і відрізняються від звичайних пагонів більшою силою росту в довжину і в товщину рихлістю будови тканини слабким прикріпленням до багаторічної частини стебла.
37677. Закладання винограднику 91 KB
  Тема: Закладання винограднику. Організація території для закладання винограднику. Скласти плансхему організації території відведеної для закладання винограднику. Організація території для закладання винограднику.
37678. Щеплення здеревянілими чубуками 101 KB
  Мета заняття. Засвоїти техніку настільного щеплення здеревянілими чубуками па машинах УПВ, ПМ-450 та МП-7А. Ознайомитись з технікою щеплення вручну способом поліпшеної копуліровки та на штифт за допомогою спеціального секатора.
37679. Виведення основних форм кущів 825.5 KB
  У перший рік добиваються високої приживлюваності саджанців. 1 Виведення середньоштамбового двобічного кордону: 1 кущ у перший рік садіння; 2 кущ на другий рік; 3 кущ на третій рік; 4 кущ на четвертий рік; 5 кущ на пятий рік: а навесні; б влітку в восени. На другий рік вирощують пагони для майбутнього штамба. На третій рік формують штамб.