10972

Критерий Колмогорова-Смирнова. Проверка гипотезы об однородности выборок

Лекция

Математика и математический анализ

Критерий КолмогороваСмирнова. Проверка гипотезы об однородности выборок Гипотезы об однородности выборок это гипотезы о том что рассматриваемые выборки извлечены из одной и той же генеральной совокупности. Пусть имеются две независимые выборки произведенные из ...

Русский

2013-04-03

122.84 KB

151 чел.

Критерий Колмогорова-Смирнова. Проверка гипотезы об однородности выборок

Гипотезы об однородности выборок – это гипотезы о том, что рассматриваемые выборки извлечены из одной и той же генеральной совокупности.

Пусть имеются две независимые выборки, произведенные из генеральных совокупностей с неизвестными теоретическими функциями распределения и .

Проверяемая нулевая гипотеза имеет вид против конкурирующей . Будем предполагать, что функции и непрерывны и для оценки используем статистику Колмогорова – Смирнова.

Критерий Колмогорова-Смирнова использует ту же самую идею, что и критерий Колмогорова. Однако различие заключается в том, что в критерии Колмогорова сравнивается эмпирическая функция распределения с теоретической, а в критерии Колмогорова-Смирнова сравниваются две эмпирические функции распределения.

Статистика критерия Колмогорова-Смирнова имеет вид:

,    (9.1)

где и – эмпирические функции распределения, построенные по двум выборкам c объемами и .

Гипотеза отвергается, если фактически наблюдаемое значение статистики больше критического , т.е. , и принимается в противном случае.

При малых объемах выборок критические значения для заданных уровней значимости критерия можно найти в специальных таблицах. При (а практически при ) распределение статистики сводится к распределению Колмогорова для статистики . В этом случае гипотеза отвергается на уровне значимости , если фактически наблюдаемое значение больше критического , т.е. , и принимается в противном случае.

Пример 1. ПРОВЕРКА ОДНОРОДНОСТИ ДВУХ ВЫБОРОК

Были осуществлены две проверки торговых точек с целью выявления недовесов. Полученные результаты сведены в таблицу:

Номер интервала

Интервалы недовесов, г

Частоты

Выборка 1

Выборка 2

1

0 – 10

3

5

2

10 – 20

10

12

3

20 – 30

15

8

4

30 – 40

20

25

5

40 – 50

12

10

6

50 – 60

5

8

7

60 – 70

25

20

8

70 – 80

15

7

9

80 – 90

5

5

Объем первой выборки был равен , а второй – .

Можно ли считать, что на уровне значимости  по результатам двух проверок (случайных выборок) недовесы овощей описываются одной и той же функцией распределения?

Решение:

Обозначим  и  – накопленные частоты выборок 1 и 2;
,  – значения их эмпирических функций распределения соответственно. Обработанные результаты сведем в таблицу:

10

3

5

0.027

0.050

0.023

20

13

17

0.118

0.170

0.052

30

28

25

0.254

0.250

0.004

40

48

50

0.436

0.500

0.064

50

60

60

0.545

0.600

0.055

60

65

68

0.591

0.680

0.089

70

90

88

0.818

0.880

0.072

80

105

95

0.955

0.950

0.005

90

110

100

1.000

1.000

0.000

Из последнего столбца таблицы видно, что . По формуле (9.1) получим . Из статистических таблиц известно, что . Так как , то принимается нулевая гипотеза , т.е. недовесы покупателям описываются одной и той же функцией распределения.

СТАТИСТИЧЕСКАЯ НЕЗАВИСИМОСТЬ И ВЫЯВЛЕНИЕ ТРЕНДА

При анализе случайных данных часто возникает ситуации, когда требуется выяснить, являются ли наблюдения или оценки параметров статистически независимыми или же они подвержены тренду. Это особенно важно при анализе нестационарных данных.

Такие исследования, обычно, проводят на основе свободных от распределений или непараметрических методов, в которых относительно функции распределения исследуемых данных не делается никаких предположений.

Критерий серий

Рассмотрим последовательность наблюдённых значений случайной величины , причём каждое наблюдение отнесено к одному из двух взаимно исключаемых классов, которые можно обозначить просто (+) или
(–). Рассмотрим ряд примеров:

  1.  Бросание монеты: герб (+), цифра (–);
  2.  Пусть имеется выборка , со средним значением . Тогда, если , то (+), если же , то (–);
  3.  Имеется последовательность одновременных измерений двух случайных величин и . Здесь каждое наблюдение обозначим (+), если и (–), если .

В каждом из этих примерах образуется последовательность вида:

Серией называется последовательность однотипных наблюдений, перед и после которой следуют наблюдения противоположного типа или же вообще нет никаких наблюдений.

В приведенной последовательности число наблюдений равно ; а количество серий равно .

Если последовательность наблюдений состоит из независимых исходов одной и той же случайной величины, т.е. если вероятность отдельных исходов [(+) или (−)] не меняется от наблюдения к наблюдению, то выборочное распределение числа серий в последовательности является случайной величиной со средним значением и дисперсией:

    (9.2)

   (9.3)

Здесь  число исходов (+), а  число исходов (−), естественно . В частном случае если , то:

.    (9.4)

Предположим, что есть основание подозревать наличие тренда в последовательности наблюдений, т.е. есть основание считать, что вероятность появления (+) или (−) меняются от наблюдения к наблюдению. Существование тренда можно проверить следующим образом. Примем в качестве нулевой гипотезы тренда нет, т.е. предположим, что наблюдений являются независимыми исходами одной и той же случайной величины. Тогда для проверки гипотезы с любым требуемым уровнем значимости необходимо сравнить наблюденное число серий с границами области принятия гипотезы равными  и , где .

Если наблюденное число серий окажется вне области принятия гипотезы, то нулевая гипотеза должна быть отвергнута с уровнем значимости . В противном случае нулевую гипотезу можно принять.

Пример 2. ПРИМЕНЕНИЕ КРИТЕРИЯ СЕРИЙ

Имеется последовательность независимых наблюдений :

5.5

5.1

5.7

5.2

4.8

5.7

5.0

6.5

5.4

5.8

6.8

6.6

4.9

5.4

5.9

5.4

6.8

5.8

6.9

5.5

Проверим независимость наблюдений, подсчитав число серий в последовательности, полученной путем сравнения наблюдений с медианой. Применим критерий с уровнем значимости .

Из анализа данных получим, что значение является медианой. Тогда введем обозначения (+) при , (–) при . Итак, получим:

В нашем примере , а область принятия гипотезы имеет вид:

.

По статистическим таблицам находим . Т.к. , то нет оснований сомневаться в независимости наблюдений, т.е. верна гипотеза  тренд отсутствует.

Критерий инверсий

Пусть имеется последовательность из наблюдений случайной величины , обозначенных . Подсчитаем теперь, сколько раз в последовательности имеют место неравенства при . Каждое такое неравенство называется инверсией. Пусть общее число инверсий. Формально вычисляется следующим образом. Определим для множества наблюдений величины

    (9.5)

Тогда:

.   (9.6)

Рассмотрим данный метод на примере последовательности из 8 наблюдений:

5

3

8

9

4

1

7

5

шаг 1: Т.к. , то ;

шаг 2: ;

шаг 3: ;

шаг 4: ;

шаг 5: ;

шаг 6: ;

шаг 7: .

Если последовательность из наблюдений состоит из независимых исходов одной и той же случайной величины, то число инверсий является случайной величиной со средним значением и дисперсией:

     (9.7)

.    (9.8)

Критерий  инверсий применяется примерно так же, как и критерий серий.

ПРИМЕЧАНИЕ:

Критерий инверсий – более мощный по сравнению с критерием серий при обнаружении монотонного тренда в последовательности наблюдений. Однако этот критерий не столь эффективен при выявлении тренда типа флуктуации.

Пример 3. ПРИМЕНЕНИЕ КРИТЕРИЯ ИНВЕРСИЙ

Рассмотрим тот же пример, что и в критерии серий (пример 2). Общее число инверсий в 20 наблюдениях равно . Из соответствующей таблицы при уровне значимости определим область принятия гипотезы: .

Следовательно, гипотеза об отсутствии тренда должна быть отвергнута, т.к. не попадает в область принятия гипотезы .

Этот пример иллюстрирует различную чувствительность двух методов.


 

А также другие работы, которые могут Вас заинтересовать

74556. КОНЦЕПТУАЛЬНІ АСПЕКТИ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ЕКОНОМІКИ 262.5 KB
  Сутність методології математичного моделювання полягає в заміні досліджуваного обєкта його образом математичною моделлю і подальшим вивченням дослідженням моделі на підставі аналітичних методів та обчислювальнологічних алгоритмів які реалізуються за допомогою компютерних програм. Другий етап вибір чи розроблення алгоритму для реалізації моделі на компютері. Зумовленість моделі обєктом. Як модель для обєкта так і обєкт для даної моделі семантично та інтерпретаційно багатозначні: обєкт описується не однією а...
74557. ОПТИМІЗАЦІЙНІ ЕКОНОМІКО-МАТЕМАТИЧНІ МОДЕЛІ 661.5 KB
  Постановка задачі економіко-математичного моделювання. Приклади задач економіко-математичного моделювання. Задача визначення оптимального плану виробництва. Задача про «дієту». Транспортна задача.
74558. Задача лінійного програмування та методи її розв’язування 2.06 MB
  Основні властивості розвязків задачі лінійного програмування. Графічний метод розвязування задач лінійного програмування. Називається допустимим розвязком планом задачі лінійного програмування.
74559. СИМПЛЕКСНИЙ МЕТОД РОЗВ’ЯЗУВАННЯ ЗАДАЧ ЛІНІЙНОГО ПРОГРАМУВАННЯ 278 KB
  Розвязування задачі лінійного програмування симплексним методом. З властивостей розвязків задачі лінійного програмування відомо: оптимальний розвязок задачі має знаходитись в одній з кутових точок багатогранника допустимих розвязків.
74560. Аналіз та управління ризиком в економіці 642.5 KB
  Економічний ризик — це об’єктивно-суб’єктивна категорія у діяльності суб’єктів господарювання, що пов’язана з подоланням невизначеності та конфліктності в ситуації неминучого вибору.
74561. Система показників кількісного оцінювання ступеня ризику 433.5 KB
  Ймовірність як один з підходів до оцінки ризику. Спрощений підхід до оцінювання ризику. Загальні підходи до кількісної оцінки ступеня ризику Виправданий ризик необхідний атрибут у стратегії і тактиці ефективного менеджменту.
74562. Ризик у відносному вираженні 775.5 KB
  Для підприємства за базу визначення відносної величини ризику як правило беруть вартість основних фондів та оборотних засобів або плановані сумарні затрати на даний вид ризикованої діяльності маючи на увазі як поточні затрати так і капіталовкладення чи розрахунковий прибуток.
74563. Цілочислове програмування 639 KB
  Геометрична інтерпретація розвязків цілочислових задач лінійного програмування на площині. Загальна характеристика методів розвязування цілочислових задач лінійного програмування.
74564. Нелінійні оптимізаційні моделі економічних систем 910 KB
  Основні труднощі розвязування задач нелінійного програмування. Раніше було розглянуто методи розвязування задач лінійного програмування. Галузі обєднання та окремі підприємства народного господарства функціонують і розвиваються за умов невизначеності а тому адекватно їх можна описати нелінійними стохастичними динамічними моделями. Зауважимо що сучасний рівень розвитку компютерної техніки і методів математичного моделювання створює передумови для застосування нелінійних методів а це може суттєво підвищити якість розроблюваних планів...