10978

Выполнение многомерного регрессионного анализа в пакете STATISTICA

Лекция

Математика и математический анализ

Выполнение многомерного регрессионного анализа в пакете STATISTICA Рассмотрим пример построения регрессионной модели в пакете Statistica 6.0. Для этих целей обычно используется модуль Multiple Regressions Множественная регрессия который позволяет предсказать зависимую переменную по н...

Русский

2013-04-03

198.06 KB

91 чел.

Выполнение многомерного регрессионного анализа в пакете STATISTICA

Рассмотрим пример построения регрессионной модели в пакете Statistica 6.0. Для этих целей обычно используется модуль Multiple Regressions (Множественная регрессия), который позволяет предсказать зависимую переменную по нескольким независимым переменным.

В стартовом диалоговом окне этого модуля (рис.1) при помощи кнопки Variables указываются зависимая (dependent) и независимые(ая) (independent) переменные. В поле Input file указывается тип файла с данными:

  1.  Raw Data - данные в виде строчной таблицы;
  2.  Correlation Matrix - данные в виде корреляционной матрицы.

 

Рис.1. Модуль Multiple Regression

В поле MD deletion указывается способ исключения из обработки недостающих данных:

  1.  Casewise - игнорируется вся строка, в которой есть хотя бы одно пропущенное значение;
  2.  Mean Substitution - взамен пропущенных данных подставляются средние значения переменной;
  3.  Pairwise - попарное исключение данных с пропусками из тех переменных, корреляция которых вычисляется.

Рассмотрим проведение регрессионного анализа на конкретном примере. Имеются результаты измерения физических данных 25 людей (мужчин и женщин). В файле данных (рис.2) 4 переменные:

1

pol

Пол обследуемого(ж – женщина; м – мужчина)

2

vozrast

Возраст обследуемого, лет

rost

Рост обследуемого, см

ves

Вес обследуемого, кг

Рис. 2. Окно файла данных

Так как в файле данных содержится информация о мужчинах и женщинах, а мы хотим провести исследования только для мужчин, то воспользовавшись кнопкой Select cases (рис. 1) можно в анализ включить только те случаи, для которых первая переменная (pol) равна "м".

Рис. 3. Окно включения (исключения) данных в анализ

На первом этапе исследований учтем, что при наличии одной зависимой переменной (rost) и двух независимых переменных (vozrast и rost) можно предложить различные модели линейной регрессии:

№ Модели

Вид зависимости

Комментарии

1

rost=

одномерная

2

rost=

одномерная

3

rost=

многомерная

О качестве предложенной модели регрессии будем судить по величине коэффициента детерминации.

Модель №1 описывает 69% данных, модель №2 только 41% данных, а третья модель 73% данных.

Если в качестве критерия оптимизации выбрать простоту модели (одномерная) – выберем модель №1 или №2, но если добавить ещё один критерий – максимальный % описания данных, то из этих двух моделей выбираем модель №1. Теперь в качестве главного критерия оптимизации выбираем максимальный процент описания данных и сравниваем модели №1 и №3. Нужно сказать, что модель №3 – многомерная, а модель №1 – одномерная. Таким образом, на первом этапе можно сказать, что многомерная модель №3 более адекватна и лучше описывает исходные данные. Естественно предположить, что и предсказания по модели №3 будут более надежными (точными).

Теперь более подробно рассмотрим последовательность действий создания модели и анализ полученных результатов.

После выбора всех опций стартового диалогового окна регрессионного анализа и нажатия кнопки ОК появляется окно результатов регрессионного анализа Multiple Regressions Results (см. рис. 4). Детально проанализируем полученные результаты регрессионной модели.

В верхней части окна приведены наиболее важные параметры полученной регрессионной модели:

  1.  Multiple R - коэффициент множественной корреляции, который характеризует тесноту линейной связи между зависимой и всеми независимыми переменными. Может принимать значения от 0 до 1.
  2.   - коэффициент детерминации. Численно выражает долю вариации зависимой переменной, объясненную с помощью регрессионного уравнения. Чем больше , тем большую долю вариации объясняют переменные, включенные в модель.
  3.  adjusted R - скорректированный коэффициент множественной корреляции. Включение новой переменной в регрессионное уравнение увеличивает  не всегда, а только в том случае, когда частный F-критерий при проверке гипотезы о значимости включаемой переменной больше или равен 1. В противном случае включение новой переменной уменьшает значение  и adjusted R.

Рис. 4. Результаты регрессионного анализа

  1.  F - F-критерий используется для проверки значимости регрессии. В данном случае в качестве нулевой гипотезы проверяется гипотеза: между зависимой и независимыми переменными нет линейной зависимости;
  2.  df - числа степеней свободы для F-критерия;
  3.  p - вероятность нулевой гипотезы для F-критерия;
  4.  Standard error of estimate - стандартная ошибка оценки (уравнения); Эта оценка является мерой рассеяния наблюденных значений относительно регрессионной прямой;
  5.  Intercept – оценка свободного члена уравнения;
  6.  Std.Error - стандартная ошибка оценки свободного члена уравнения;
  7.  t - t-критерий для оценки свободного члена уравнения;
  8.  p - вероятность нулевой гипотезы для свободного члена уравнения.
  9.  Beta - β-коэффициенты уравнения. Это стандартизированные регрессионные коэффициенты, рассчитанные по стандартизированным значениям переменных. По их величине можно оценить значимость зависимых переменных. Коэффициент показывает, на сколько единиц стандартного отклонения изменится зависимая переменная при изменении на одно стандартное отклонение независимой переменной, при условии постоянства остальных независимых переменных. Свободный член в таком уравнении равен 0.

Нажатие кнопки - в окне результатов (см рис. 4) позволяет получить основные результаты регрессионной модели (рис. 5), часть из которых уже была описана: В - коэффициенты уравнения регрессии; St. Err. of B - стандартные ошибки коэффициентов уравнения регрессии;
t (11) - t-критерий для коэффициентов уравнения регрессии; р-level - вероятность нулевой гипотезы для коэффициентов уравнения регрессии.

Рис. 5. Параметры уравнения регрессии

В результате проведенного анализа было получено следующее уравнение:

rost = 150,4397 + 0,605*vozrast + 0,2081*ves.

Это уравнение объясняет 73,3% () вариации зависимой переменной. Полученные результаты свидетельствуют о том что коэффициент  при переменной ves незначимо отличается от нуля, однако включение этой переменной в регрессионную модель увеличивает на 4 % процент исходных данных, корректно описанных регрессионным уравнением.

Проверка качества уравнения регрессии осуществлялась с помощью статистики . По статистическим таблицам Фишера – Снедекора с данными степенями свободы  гипотезу  (линейная зависимость отсутствует) можно принять с вероятностью ; при уровне значимости α = 0.05 принимаем альтернативную гипотезу – линейная зависимость значима.

Одновременно проверялась статистическая значимость коэффициентов множественной регрессии (критерий Стьюдента). Видно (см. рис. 5), что коэффициенты  и  значимо отличаются от нуля, коэффициент  незначимо отличается от нуля.

Для расчета по полученному регрессионному уравнению значений зависимой переменной по значениям независимых переменных воспользуемся кнопкой (раздел Residuals/assumptions/prediction) (рис.6).

Зададим значения возраста (vozrast = 23) и веса (ves = 65). Учтем, что в пакете Statistica приводится как точечная, так и интервальная оценка (рис. 7).

Рис. 6. Окно задание значений независимых переменных

Рис. 7. Предсказанные точечные и интервальные значения

О полученных результатах можно сказать следующее: rost = 177,8851 – это точечная оценка. 95% доверительный интервал равен (171.4; 184,4).

При нажатии на кнопку можно оценить величины остатков и специальных критериев (см. рис. 8).

В таблицу включены все случаи (м), приведены исходные данные (Observed), данные модели (Predicted)  и остатки (Residual). Остатки – это разность исходных и предсказанных данных.

Рис. 8. Таблица остатков

Для выделения имеющихся в регрессионных остатках выбросов предложен ряд дополнительных показателей:

  1.  Расстояние Кука (Cook's Distance) - принимает только положительное значение и показывает расстояние между коэффициентами уравнения регрессии после исключения из обработки i-ой точки данных. Большое значение показателя Кука указывает на сильно влияющий случай (выброс).

В нашем случае Case № 5, 16 и 20 смещают оценки коэффициентов регрессии.

  1.  Расстояние Махаланобиса (Mahalns. Distance) - показывает насколько каждый случай или точка в р-мерном пространстве независимых переменных отклоняется от центра статистической совокупности.

Кнопка (раздел Advanced) предназначена для поиска выбросов. Выбросы – это остатки, которые значительно превосходят по абсолютной величине остальные. Выбросы показывают опытные данные, которые являются не типичными по отношению к остальным данным, и требует выяснения причин их возникновения. Выбросы должны исключаться из обработки, если они вызваны ошибками регистрации, измерения и т.п.


 

А также другие работы, которые могут Вас заинтересовать

41657. Техника аудиовизуальных средств информации 17.18 MB
  Спецэффекты Для создания качественных видео фильмов в программе dobe Premiere имеется значительное количество различных спецэффектов. При этом существует два основных типа эффектов: статические и динамические. Перед тем как начать процесс редактирования клипов с помощью эффектов необходимо активировать соответствующие вкладки в окнах Medi Browser вкладка Effects и Source вкладка Effect Controls. На следующем этапе выделите нужный клип в монтажной области с помощью инструмента выделения в результате чего во вкладке Effect Controls...
41658. Защита информации, антивирусная защита. Эксплуатационные требования к компьютерному рабочему месту 185.58 KB
  Лист № докум. Подпись Дата Лист 1 Лабораторная работа № 3 Разраб. Листов 3 47Э1 Цель работы Ознакомиться с теоретическими аспектами защиты информации от вредоносных программ: разновидности вирусов способы заражения и методы борьбы. Лист № докум.
41659. РАБОТА В ПРОГРАММНОЙ СРЕДЕ MICROSOFT OUTLOOK 757.34 KB
  Программная среда Microsoft Outlook пришла на смену разнообразным видам бумажных носителей которые использовали руководители и секретари для организации своей работы. Сегодня для организации документов и отправки почты планирования задач встреч событий и собраний ведения списка контактов а также учета всех выполненных работ используется программа Microsoft Outlook. Информация в среде Outlook организована в виде папок аналогичных по назначению своим бумажным предшественникам.
41660. Поверка средств измерений 39.3 KB
  Поверка средств измерений Цели и задачи работы: Изучение правил организации и порядка проведения поверки средств измерения. Краткие сведения из теории: Поверкой средств измерений называют совокупность действий выполняемых для определения и оценки погрешностей средств измерений. Вид поверки определяют в зависимости от того какой метрологической службой проведена поверка от характера поверки инспекционная экспертная каков этап работы средства измерений первичная периодическая внеочередная. Организацию и поверку средств измерений...
41661. Косвенные измерения. Определение показателей точности косвенных измерений 587.13 KB
  Косвенные измерения. Определение показателей точности косвенных измерений Цели и задачи работы: изучение методов измерения при которых искомое значение физической величины находят путем согласованных наблюдений других величин определяемых опытным путем связанных с искомой физической величиной известной зависимостью; ознакомление с правилами оценивания погрешностей косвенных измерений. При выполнении работы необходимо практически ознакомиться с системой допусков и посадок требованиями к точности линейных и угловых параметров изделий...
41662. Вставка и редактирование формул в редакторе WORD 73.64 KB
  Вставка и редактирование формул. Вставка формул. Вставка формул в редакторе WORD осуществляется с помощью формульного редактора. Вызов формульного редактора Eqution Editor из Word можно осуществить следующей последовательностью действий: поместите курсор в то место где должна быть вставлена формула; в меню вставка выберите команду обьект ; выберите закладку создание ; В окне тип обьекта выберите Microsoft Eqution 3.
41663. Теория электрической связи 263.74 KB
  Получение характеристик частотного модулятора при воздействии на его вход моногармонического сигнала. Напряжение смещения Есм являющееся постоянной составляющей модулирующего сигнала позволяет установить несущую частоту модулированного сигнала а переменная составляющая т. сам модулирующий сигнал поданный на гнезда КТ1 обеспечивает девиацию частоты fmx зависящую от амплитуды модулирующего сигнала. В схеме модулятора имеется блок автоматической регулировки усиления поддерживающий постоянную амплитуду ЧМ сигнала на схеме не показан.
41664. Исследование зависимости выходного напряжения усилительного каскада от амплитуды и частоты входного сигнала 155.55 KB
  Цель: Научиться определять и анализировать зависимости выходного напряжения усилительного каскада от амплитуды и частоты входного сигнала. Лабораторная работа №6 Тема: Исследование зависимости выходного напряжения усилительного каскада от амплитуды и частоты входного сигнала. Лабораторная работа №6 Тема: Исследование зависимости выходного напряжения усилительного каскада от амплитуды и частоты входного сигнала.