11047

Манипуляторы робототехнических систем

Лекция

Физика

Манипуляторы робототехнических систем 6.1. Манипулятор. Кинематические пары цепи и схемы. Базовым элементом робота является манипулятор механизм обладающий несколькими степенями подвижности который предназначен для перемещения и ориентации объектов ...

Русский

2013-04-03

219.5 KB

100 чел.

Манипуляторы робототехнических систем

6.1. Манипулятор. Кинематические пары, цепи и схемы.

           Базовым элементом робота является манипулятор - механизм, обладающий несколькими степенями подвижности, который предназначен для перемещения и ориентации объектов в рабочем пространстве. Многозвенная конструкция манипулятора заканчивается сменным схватом (иногда называют захватом) - инструментом, предназначенным для захвата объектов определенной формы. Вместо схвата на конце этой конструкции может быть закреплен сменный инструмент (гайковерт, фреза, сверло, метчик и т.п.). В этом случае с помощью манипулятора могут быть выполнены различные технологические операции, например зачистка заготовок, нарезание резьбы, сверление отверстий.

Две характерные конструкции манипуляторов показаны на рис. 6. 1. Один из них имеет только шарнирные соединения (рис. 6.1, а). Его звенья могут поворачиваться относительно трех основных осей О1, О2 и О3, обеспечивающих перемещение схвата в рабочей зоне; еще две оси О4 и О5 определяют ориентирующие движения схвата. Второй манипулятор (рис. 6.1, б), кроме вращений относительно осей 01, 02 и 03, допускает поступательное перемещение звеньев вдоль оси 04.

Рисунок 6.1 .- Конструкция промышленных манипуляторов: а- PUMA-560; б - UNIMATE

Напомним, что механизмом называют систему тел, предназначенную для преобразования движения одних тел в требуемое движение других. Манипуляционный механизм (манипулятор) представляет собой систему тел, которые предназначены для перемещения тела, удерживаемого в схвате манипулятора (инструмента, детали). Тела, образующие манипулятор, называют его звеньями.

Звенья, образующие попарные соединения и допускающие относительные перемещения, называют кинематическими парами. Каждое звено, рассматриваемое как твердое тело, имеет шесть степеней свободы. Если в кинематической паре на относительное движение звеньев наложено S условий связи (число S определяет класс кинематической пары), то число степеней кинематической пары равно

h = 6 – S.

При S = 0 звенья взаимно свободны, а при S = 6 -- взаимно неподвижны, т.е. 1 < S < 6. Так, для шарового шарнира S = 3 , h = 3 ; для цилиндрической пары S = 4, h = 2 ; для простого цилиндрического шарнира и призматической пары поступательного движения S = 5, h =1.

Систему звеньев, образующих кинематические пары, называют кинематической цепью. Если в цепи имеются звенья, входящие только в одну кинематическую пару, то цепь называют незамкнутой (разомкнутой). В противном случае, т.е. если каждое звено входит, как минимум, в две кинематические пары, цепь считают замкнутой. Кинематические цепи манипуляторов, показанные на рис. 6.1, являются незамкнутыми; если же один из них обрабатывает поверхность, расположенную на неподвижном основании, то его кинематическая схема совместно с инструментом и объектом работы образует замкнутую кинематическую цепь. При этом следует учитывать условное неподвижное звено, которое замыкает цепь.

Число степеней подвижности кинематической цепи равно

где п — число подвижных звеньев,  pi — число кинематических пар i-гo

класса.

Например, для манипулятора, изображенного на рис. 6.2, а, кинематическая цепь имеет  ν = 6·5 — 5·5 = 5 степеней подвижности.

Рисунок 6.2.- Разомкнутая (а) и замкнутая (б) кинематические цепи

Заметим, что число степеней подвижности кинематической цепи совпадает с числом кинематических пар только в том случае, если все пары относятся к пятому классу. В последнем случае ν = 6п - 5р5.

Число степеней подвижности кинематической цепи — важнейшая характеристика манипулятора, поскольку она определяет число степеней свободы схвата манипулятора. Чтобы манипулятор мог свободно перемещать и ориентировать в пространстве твердое тело, удерживаемое в схвате, он должен иметь не менее шести степеней подвижности. Причем, если ν > 6 , то говорят о кинематической схеме с избыточностью. Кинематические схемы с избыточностью необходимы в тех случаях, когда на перемещение предмета наложены дополнительные условия, например при перемещении тела внутри цилиндрической трубы.

При замыкании кинематической цепи число ее степеней подвижности понижается. Например, предполагая, что манипулятор удерживает рычаг без проскальзывания (рис. 6.2, б), получаем п = 6, р5 =7, следовательно, ν = 1.

Типовые кинематические схемы манипуляторов приведены на рис. 6.3.

Рисунок 6.3.- Типовые кинематические схемы манипуляторов: а – прямоугольная, б – цилиндрическая, в – сферическая, г- антропоморфная, д- с избыточностью, е – SCARA, ж- схема гидравлического манипулятора с ветвлением кинематической цепи.

На рис. 6.3, а все звенья взаимно перпендикулярны и образуют пары поступательного движения пятого класса. В декартовой системе координат OXYZ, связанной с основанием робота, координаты схвата определяются перемещениями по каждой из степеней подвижности кинематической цепи. Поэтому можно сказать, что робот функционирует в прямоугольной декартовой системе координат. Основным достоинством такого робота является удобство управления, поскольку исключается необходимость пересчета требуемых координат объекта работы в значения перемещений в отдельных степенях подвижности. Однако конструкция такого робота имеет большие габаритные размеры, что является недостатком.

Один из наиболее известных промышленных роботов VERSATRAN имеет кинематическую схему, представленную на рис. 6.3, б. В этой схеме две пары поступательного перемещения и одна — вращательного (все — пятого класса). Координаты схвата в данном случае можно задать тремя переменными - высотой h, длиной выдвижения L и углом поворота φ, что соответствует цилиндрической системе координат, в которой и работает робот рассматриваемого типа.

Не менее известная конструкция промышленного робота типа UNIMATE (см. рис. 6.3, в) имеет две вращательные пары и одну поступательную (телескопическую) пару. Таким образом, координаты схвата определяются в сферической системе координат двумя углами φ , θ и радиусом R.

Из этих трех конструкций наименее сложной является вторая. Наибольшую гибкость в достижении различных точек рабочего пространства имеет третья схема. Недостатком второй и третьей схем по сравнению с первой является меньшая точность и необходимость применения специальных конструктивных решений для обеспечения сбалансированности конструкции.

Многозвенный манипулятор, имеющий четыре шарнирных пары, показан на рис. 6.3, г. В соответствии с такой схемой построены манипуляторы промышленного робота Cincinatti Milacron, российских роботов типа УЭМ-5, РМ-01, ТУР. Они относятся к манипуляторам антропоморфного типа. Гибкость «руки» обеспечивается за счет усложнения конструкции. Задача управления при этом значительно усложняется, поскольку требуется расчет движений в каждом шарнире, обеспечивающем необходимое движение схвата.

Эта задача усложняется и для многозвенных манипуляторов с избыточностью, предназначенных для работы в пространстве с препятствиями (рис. 6.3, д).

Кинематическая схема манипулятора типа SCARA приведена на рис. 6.3, е. Две вращательные степени подвижности обеспечивают произвольное перемещение объекта в плоскости, а перемещение плоскости позиционирования осуществляется поступательной степенью подвижности. Такая схема, сочетающая значительную гибкость при движениях в плоскости с жесткостью конструкции в вертикальном направлении, оказалась эффективной при выполнении задач сборки и обработки плоских поверхностей.

  В рассмотренных кинематических схемах все звенья манипулятора связаны между собой с помощью соединений, обеспечивающих взаимное перемещение. Двигатели, приводящие в движение звенья, можно  размещать в этих соединениях или передавать соответствующие силы и моменты через механизмы передачи движений, не меняющие кинематическую схему. Однако это не всегда возможно. Схема гидравлического манипулятора, силовыми элементами которого являются гидроцилиндры, приведена на рис. 6.3, ж. Эти гидроцилиндры вместе с соответствующими штоками составляют дополнительные связи в кинематической схеме, причем количество звеньев, соответствующих одной степени подвижности, становится больше двух. Такие кинематические схемы называют схемами с ветвлением кинематической цепи. Простота конструктивного решения схемы приводит к трудностям, связанным с расчетом управляющих сигналов для каждой степени подвижности.

Мы рассмотрели только те движения, которые обеспечивают перенoc объекта в рабочем пространстве, но его необходимо еще и ориентировать. Например, при дуговой сварке электрод, удерживаемый роботом, должен быть перпендикулярен рабочей поверхности. В большинстве известных конструкций перемещение и ориентацию объекта обеспечивают различные степени подвижности манипулятора, которые подразделяют на переносные и ориентирующие соответственно. Наиболее характерная компоновка ориентирующих степеней подвижности показана на рис. 6.4.

Они обеспечивают три вращательных движения схвата — наклон, вращение и качание. Чем ближе оси этих степеней подвижности расположены одна к другой и к схвату, тем меньше возникает дополнительных поступательных движений, сопутствующих ориентирующим, тем самым задача управления сложным движением объекта упрощается.

Рисунок 6.4.- Компоновка ориентирующих степеней подвижности схвата

Однако очевидно, что при такой компоновке ориентирующих степеней поворот объекта относительно неподвижной оси, связанной, например, с его центром масс, обеспечивается как ориентирующими, так и переносными степенями подвижности манипулятора.

В ряде случаев степени подвижности не подразделяют на переносные и ориентирующие. Примером может служить схема манипулятора с избыточностью (см. рис. 6.3, д), обеспечивающая как ориентацию, так и перемещение объекта. Другой характерный пример -  манипуляционная конструкция, построенная по принципу платформы Стюарта (рис. 6.5.)

Рисунок 6.5.- Платформа Стюарта

Еще одна степень подвижности кинематической цепи манипулятора, пока не принятая нами во внимание, — это сам схват. За исключением случаев, когда захват предмета происходит немеханическим путем (электромагнит, вакуумные «присоски» и т.п.), схват представляет собой механизм, имеющий в наиболее простом случае две губки для зажима предмета. При необходимости схват может быть трехпалым или иметь большее количество пальцев.

Схват в качестве степени подвижности манипулятора также необходимо учитывать при подсчете суммарного числа степеней подвижности. Так, для манипулятора, обеспечивающего произвольную ориентацию и перемещение объекта в рабочей зоне с учетом схвата, минимальное число степеней подвижности равно семи.


 

А также другие работы, которые могут Вас заинтересовать

80800. Правовое регулирование обращения с химическими и биологическими веществами 29.88 KB
  Закон о санитарноэпидемиологическом благополучии населения предусмотрел в качестве одной из основных мер обеспечения безопасного обращения с потенциально опасными для человека химическими биологическими веществами и отдельными видами продукции государственную регистрацию ст. Потенциально опасные для человека химические биологические вещества и отдельные виды продукции допускаются к производству транспортировке закупке хранению реализации и применению использованию после их государственной регистрации. Правовое регулирование...
80801. Экологические требования при эксплуатации опасных производственных объектов 32.08 KB
  Организация эксплуатирующая опасный производственный объект обязана: соблюдать положения настоящего Федерального закона других федеральных законов и иных нормативных правовых актов Российской Федерации а также нормативных технических документов в области промышленной безопасности; иметь лицензию на осуществление конкретного вида деятельности в области промышленной безопасности подлежащего лицензированию в соответствии с законодательством Российской Федерации; обеспечивать укомплектованность штата работников опасного производственного...
80802. Правовое регулирование генно-инженерной деятельности 32.83 KB
  Внедрение результатов генноинженерной деятельность сопряжено с потенциальными отрицательными последствиями для природы. В связи с этим возникает потребность в правовом регулировании экологических отношений возникающих при осуществлении генноинженерной деятельности. Этим целям служит Федеральный закон О государственном регулировании генноинженерной деятельности .
80803. Меры обеспечения экологической безопасности 31.19 KB
  Экологическая безопасность обеспечивается комплексом правовых организационных финансовых материальных и информационных мер предназначенных для прогнозирования предотвращения ликвидации реальных и потенциальных угроз безопасности смягчения их последствий. Угроза экологической безопасности выражает повышенную вероятность гибели отдельных природных объектов существенного загрязнения отравления или заражения окружающей среды масштабы которых определяются исходя из размеров поражения окружающей среды его устойчивости возможности...
80804. Предупреждение и ликвидация чрезвычайных ситуаций природного и техногенного характера 32.12 KB
  Предупреждение чрезвычайных ситуаций это комплекс мероприятий проводимых заблаговременно и направленных на максимально возможное уменьшение риска возникновения чрезвычайных ситуаций а также на сохранение здоровья людей снижение размеров ущерба окружающей среде и материальных потерь в случае их возникновения. Ликвидация чрезвычайных ситуаций это аварийноспасательные и другие неотложные работы проводимые при...
80805. Правовые меры обеспечения радиационной безопасности 30.43 KB
  Федеральный закон о радиационной безопасности населения закрепляет требования по обеспечению радиационной безопасности при обращении с радиоактивными веществами ядерными материалами. При обращении с источниками ионизирующего излучения организации обязаны: 1соблюдать требования законодательства РФ норм правил и нормативов в области обеспечения радиационной безопасности; 2 планировать и осуществлять мероприятия по обеспечению радиационной безопасности; 3 осуществлять систематический производственный контроль за радиационной обстановкой на...
80806. Правовой режим территорий подвергшихся радиоактивному загрязнению 29.82 KB
  зона эвакуации территория вокруг Чернобыльской АЭС с которой в 1986 г. было эвакуировано население 30километровая зона; 2. зона первоочередного отселения; 3. зона последующего отселения; 4.
80807. Порядок обращения с отходами производства и потребления 31.6 KB
  была принята серия специальных законодательных и иных нормативноправовых актов полностью или частично регламентирующих обращение с отходами в рамках логического правотворчества что послужило прорывом в данной области. определил правовые основы обращения с отходами производства и потребления в целях предотвращения их вредного воздействия на здоровье человека и окружающую среду впервые четко зафиксировал принципы государственной политики в сфере обращения с отходами: охрана здоровья человека поддержание и восстановление благоприятного...
80808. Понятие, система и источники международного экологического права 33.01 KB
  38 Устава Международного суда ООН источниками международного права охраны окружающей среды являются: международные договоры как общие так и специальные; международный обычай как доказательство всеобщей практики признанной в качестве правовой нормы; общие принципы права признанные цивилизованными государствами; вспомогательное право т. Источники международного экологического права разделяются: на общие Устав ООН конвенции общего характера регулирующие наряду с иными вопросами и охрану окружающей среды Конвенция ООН по...