1108

Общие сведения о полупроводниках

Доклад

Физика

Модель атома. Энергетическая диаграмма полупроводника. Энергетические диаграммы полупроводников. Элементы, IV группа таблицы Менделеева германий (Ge), кремний (Si).

Русский

2013-01-06

52.5 KB

80 чел.

Общие сведения о полупроводниках.

Полупроводниковые материалы встречаются в природе довольно часто, но далеко  не все из них находят применение при создании полупроводниковых приборов электроники. В основном находят применение следующие:

  1.  Элементы, IV группа таблицы Менделеева германий (Ge), кремний (Si). Используются в основном в транзисторах, диодах, тиристорах.
    1.  Соединения III и V групп таблицы Менделеева, условное обозначение   AIII BV  (арсенид галлия, GaAs, антимонид индия, InSb, фосфиды). Область применения – приборы для сверхвысоких частот (СВЧ), фотоприборы, светоизлучающие приборы.
    2.  Другие полупроводниковые соединения

Несмотря на различную принадлежность к группам у названных материалов имеются общие свойства, благодаря которым они и относятся собственно к полупроводникам. Это следующие.

1) По удельной проводимости они занимают промежуточное положение между диэлектриками и металлами,  10 -2 – 10 4 Ом/см.

         2) Удельное сопротивление сильно  зависит от наличия примесей, от температуры, от радиационных излучений.

Тема, о которой пойдет речь ниже, подробно изучается в разделе «Физика твердого тела» общего курса физики. Здесь же будут приведены только основные нужные нам определения.

         Все полупроводниковые материалы имеют кристаллическую структуру. В  узлах кристалла находятся атомы, состоящие из положительно заряженного ядра и отрицательно заряженных электронов, вращающихся вокруг него. Это структура известна как модель атома Бора (рис. 1). Электроны имеют различные энергии (энергетические состояния).

                                                    

                                             Рис. 1 Модель атома

На внешней оболочке четырехвалентного полупроводника находится четыре электрона, благодаря которым между атомами возникает так называемая ковалентная связь. У одиночного атома энергетические состояния электронов занимают определенные уровни. При объединении атомов в кристаллическую решетку, каждый электрон испытывает воздействие не только своего атома, но и соседних и уровни расщепляются на энергетические зоны (рис. 2). В итоге этого формируется энергетическая диаграмма полупроводника, состоящая в общем случае из нескольких разрешенных зон, разделенных запрещенными зонами.  В разрешенных зонах могут находится электроны, а в запрещенных нет. На рис. 2 показаны две разрешенные зоны: нижняя зона – валентная и верхняя зона – зона проводимости. Такая энергетическая диаграмма у полупроводниковых материалов германия, кремния и арсенида галлия.      

Рис. 2. Энергетическая диаграмма полупроводника

В дальнейшем энергетическую диаграмму полупроводника будем показывать состоящей из 3-х зон. Электропроводность полупроводника  зависит от ширины зоны. Популярные материалы следующие зоны: Ge   W = 0.72 эВ,  Si   W = 1.13 эВ, GaAs   W = 1.32 эВ. Чем меньше W, темь меньше и удельное сопротивление материала. Таким образом, из приведенного ряда германий самый низкоомный полупроводник.

Внесение примесей влияет на проводимость и находит отражение в энергетическом состоянии. Напомним, что валентность кристалла равна четырем.

При добавлении  5-и валентной примеси, ее четыре электрона вступают в ковалентную связь с атомами основного вещества, а четвертому электрону связи нет. При относительно слабом энергетическом воздействии он может уйти от своего атома и превратится в свободный, подвижный носитель. Такой кристалл обладает электронной проводимостью, а 5-и валентная примесь называется донорной.

При добавлении 3-х валентной примеси, три электрона вступают в связь. Для четвертого электрона атома полупроводника связи нет. При слабых энергетических воздействиях может разорваться связь между соседними атомами и электрон с этой связи захватится атомом примеси (акцепторная примесь). В свободном же месте от электрона образуется положительно заряженное место, которое называется дыркой. В это место могут приходит электроны с соседней ковалентной связи, оставляя после себя дырку. Так возникает механизм дырочной проводимости. Дырка имеет положительный заряд, хотя и обязана своим существование электрону.

Заметим, что в металлах проводимость обеспечивается электронами, а в полупроводниках либо электронами (n-полупроводники), либо дырками (p-полупроводники), либо, если примесей нет, и электронами и дырками (i-полупроводники).

Изложенный механизм проводимости находит отражение в энергетическом состоянии полупроводника. При внесении примесей в энергетической диаграмме возникают дополнительные примесные разрешенные уровни при небольших концентрациях примесей и даже примесные зоны при значительных. В последнем случае полупроводники называются вырожденными.

На рис.3 приведены энергетические диаграммы полупроводников.

                    а)                                     б)                                        в)

               Рис.3 Энергетические диаграммы полупроводников,

а)  без примесей, б) с 5-и валентной примесью, в) с 3-х валентной примесью

Вероятности нахождения электрона на определенном уровне энергии определяется статистическими законами, которых существует несколько (статистика Максвелла, Ферми и т. д.). Наиболее популярен  статистический закон Ферми, который определяет вероятность электрона на уровне W :

                                                       ,

здесь Wf – энергия Ферми(не трудно видеть что вероятность нахождения на этом уровне равна 0.5), k – постоянная Больцмана, Т – абсолютная температура. Положение уровня Ферми на энергетической диаграмме зависит от примесей. В чистом полупроводнике он в середине запрещенной зоны, в электронном – вблизи зоны проводимости, а в дырочном – вблизи валентной (рис.3).

Уже при комнатной температуре в кристалле идут процессы генерации и рекомбинации носителей. В чистом полупроводнике электроны из валентной зоны переходят в зону проводимости, оставляя после себя дырку. Таким образом рождается электронно – дырочная пара. И электроны, и дырки способны переносить электрический ток в равной степени. Наряду с этим идет обратный переход, электрон спускается в валентную зону, соединяется с дыркой и в кристалле образуется нейтральное место. Этот процесс называется рекомбинацией.

Несколько иначе эти процессы идут в примесных полупроводниках. Обратите внимание на рис.3, между примесными уровнями и разрешенными зонами имеется  весьма небольшой энергетический зазор, что облегчает генерацию носителя тока.

Именно благодаря этому, в n-полупроводнике, каждый атом примеси отдает свой электрон в пространство, а на месте примеси остается неподвижный положительно заряженный ион.

Подобная картина имеет место в p-полупроводнике; образуется подвижный положительный заряд (дырка) и неподвижный отрицательный ион.

             Подробно вопросы проводимости, энергетических состояний изложены в соответствующих разделах физики.


 

А также другие работы, которые могут Вас заинтересовать

75089. История поселений Переволоцкого района Оренбургской области 353.5 KB
  И сами крепости и казачьи дома строились деревянными. Паллас указывает что в крепости построены казармы имеются дома для офицеров церковь и больше двухсот обывательских домов. Спустя несколько лет строили дома. Первые поселенцы строили деревенские дома из леса которого было достаточно по берегам речек.
75091. Обыкновенное чудо – поваренная соль 293 KB
  История появления соли. Изучение влияния поваренной соли на здоровье человека и применение ее в хозяйстве. Советы по использованию соли. Предмет исследования: свойства и применение поваренной соли.
75092. БУДЕТ ЛИ КОНЕЦ СВЕТА? 492 KB
  В библейских описаниях не однократно упоминается об апокалипсисе, как о неминуемом событии, настигнувшем человечество в момент его полного совершенства. С древних времен люди трактовали конец света по-разному, со временем добавляя или изменяя те или иные формулировки.
75093. История одного музейного экспоната 108 KB
  Все части и соединения противника длительное время находились в обороне и были всесторонне подготовлены к ведению боевых действий в специфических условиях Крайнего Севера. В середине сентября войска вытеснили из нейтральной зоны мелкие группы противника и к концу месяца...
75095. Родословная моей семьи 791 KB
  Цель моей работы: изучить значение фамилий моего генеалогического древа, узнать как жили, чем занимались мои предки, кем они были по профессии. Задачи: выяснить, кто является моими предками; установить, где они проживали и чем занимались; изучить их биографию, значение фамилий моего рода.