1112

Кремниевый стабилитрон

Доклад

Физика

Процессы в p-n переходе при обратном напряжении. Энергетическая диаграмма p-n перехода при больших концентрациях. Пробои p-n перехода. ВАХ кремниевого стабилитрона. Характеристика стабилизатора.

Русский

2013-01-06

65.5 KB

54 чел.

Кремниевый стабилитрон

В этом диоде применяется электрический неразрушающий  пробой p-n перехода, который возникает при обратных напряжениях. Существуют два вида электрического пробоя: лавинный и туннельный. Для лавинного пробоя требуется обратное напряжение более 6- 8-и Вольт (8-150 В), для туннельного – до 6-8 Вольт. Рассмотрим механизм лавинного пробоя. На рис. показан p-n переход при обратном напряжении.

                             

                                

               Рис. Процессы в  p-n переходе при обратном напряжении

Неосновной носитель  p- области, электрон , в p-n переходе попадает в сильное электрическое поле и набирает большую кинетическую энергию. При ударении в нейтральный атом кристаллической решетки происходит его ионизация. В результате образуются свободные  носители, отрицательные электроны и положительный ион . Вновь образованные электроны ускоряются электрическим полем, набирают достаточную для ионизации энергию и «раскалывают» нейтральный атом. Таким образом, происходит лавинное размножение носителей, лавинная ионизация, которая оценивается коэффициентом лавинного размножения M=n1- число вышедших из перехода электронов/n2 – число вошедших в переход электронов, М>1. Такое же поведение и у дырочных носителей вошедших в переход.

Туннельный пробой наступает переходах малой толщины Δ, что будет при высокой концентрации примеси. Энергетическая диаграмма   p-n перехода для этого случая при обратном напряжении показана на рис.


                     

Рис. Энергетическая диаграмма p-n перехода при больших концентрациях

                                                       Примесей

Ее особенности таковы.

- обратное напряжение привело к увеличению энергетического барьера на переходе.

- Высокая концентрация примесей образовала энергетические примесные зоны.

- Напротив валентной зоны p-области расположилась зона проводимости n-области.

При перечисленных условиях электроны могут не меняя своей энергии переходить из валентной зоны p в зону проводимости n. Это туннелирование электронов, которое и происходит при пробое. На практике процесс нарастания обратного тока происходит резко, в то время как при лавинном пробое увеличение идет постепенно. Вольт-амперная характеристика стабилитрона показана на рис.

Необходимо заметить, что при больших токах оба электрические пробоя заканчиваются тепловым разрушением перехода, тепловым пробоем.


Рис. Пробои p-n перехода

      На рис. отдельно показана вольт-амперная характеристика стабилитрона и по ней введены параметры рабочей ветви.

                                          Рис. ВАХ кремниевого стабилитрона

- Uст – напряжение стабилизации.

- Iст max – максимальный ток стабилизации.

-  Rст – статическое сопротивление рабочего участка, Rст = Uст / Iст.

- Rдин – динамическое сопротивление рабочего участка Rдин = ΔUст / ΔIст .

-  ТКН – температурный коэффициент напряжения. Показывает, как изменяется напряжение стабилизации от изменения температуры, ТКН= ΔUст/ UстT, где Т – абсолютная температура.

На рис. показана схема стабилизатора напряжения. Такие стабилизаторы называются параметрические, то - есть в них используются параметры  ВАХ.


Рис. Схема стабилизатора напряжений.

Назначение элементов в схеме следующее. R2 – сопротивление нагрузки,

R1 – сопротивление, ограничивающее ток и предотвращающее тепловой пробой, VD1 – кремниевый стабилитрон. Основная характеристика стабилизатора Uвых=F(Uвх), ее вид изображен на рис. 19.

                                        

                                    Рис. 19 Характеристика стабилизатора

Качество стабилизатора определяется коэффициентом стабилизации, который равен отношению относительного изменения входного напряжения к относительному изменению выходного,  Kст = (ΔUвх/Uвх)/( ΔUвых/Uвых). Чем больше этот коэффициент, тем выше качество стабилизатора. Обычно Кст=10-30. Полезно запомнить следующее.

- Стабилитрон не включается без ограничительного балластного сопротивления (R1 на рис.).

- Для увеличения напряжения стабилизации допускается последовательное включение стабилитронов.

-   Параллельное включение бессмысленно, т.к. у них большой разброс параметров и первый открывшийся стабилитрон не допустит открывание второго.


A

A

+

-

-

+

-

-

-

P-область,

-U 

n-область

+U

p-n переход

Электрон

ион

Uобр.

Лавинный пробой

Туннельный пробой

тепловой

пробой

Iобр.

Uобр.

Iобр.

ΔUст.

Iст.maxx

ΔIст.

Uст.

R1

 Uвх.

Uвых.

VD1           R2

+

  

1

2

Uвых

Uвх

Электрический

пробой

Рабочий участок

ВАХ


 

А также другие работы, которые могут Вас заинтересовать

14392. Изучить работу ионизационного манометра, зависимость ионного тока от изменения различных параметров 267.5 KB
  Лабораторная работа № 10 Цель работы: Изучить работу ионизационного манометра зависимость ионного тока от изменения различных параметров ток накала напряжение на сетке между катодом и анодом. Приборы и материалы: Ионизационный манометр миллиамперметры – 2 амперме...
14393. Определение вязкости жидкости и исследование зависимости вязкости от температуры 92.5 KB
  Отчет по работе №26 Определение вязкости жидкости и исследование зависимости вязкости от температуры Цель работы: определить вязкость жидкости и исследовать зависимость вязкости от температуры. Приборы: шарики двухстрелочный секундомер катетометр или микр...
14394. Измерение чувствительности и внутреннего сопротивления гальванометра 131.5 KB
  Отчет по работе №32 Измерение чувствительности и внутреннего сопротивления гальванометра Цель работы: определить внутреннее сопротивление гальванометра его чувствительность по току и по напряжению рассчитать шунт и добавочное сопротивление к гальванометру ...
14395. Определить отношение теплоемкостей для воздуха двумя способами 2.92 MB
  Лабораторная работа № 49 Цель работы: Определить отношение теплоемкостей для воздуха двумя способами по скорости звука и расширению газа. Приборы и материалы: Насос емкость баллон манометр. Генератор звуковой частоты микрофон. Определение при помощи расшир...
14396. Произвести градуировку термопары медь – константан 129.5 KB
  Лабораторная работа № 52 Цель работы: Произвести градуировку термопары медь – константан. Измерить э.д.с. термопары в 3х точках. Приборы и материалы: гальванометр ключ на два положения магазины сопротивлений – 3 реостат элемент Вестона. ...
14397. Определение коэффициента поверхностного натяжения жидкостей 307 KB
  Отчет по работе № 61 €œОпределение коэффициента поверхностного натяжения жидкостей€ Цель работы: измерить коэффициента поверхностного натяжения воды и растворов спирта в воде в зависимости от концентрации. Будем рассматривать два различных задания для определен...
14398. Градуировка Вольтметра и Амперметра 3.33 MB
  Лабораторная работа №7 Тема: Градуировка Вольтметра и Амперметра. Приборы и материалы: элемент питания. элемент питания Вестона источник э.д.с. в 4 вольта гальванометр вольтметр четыре магазина резисторов соединительные провода. Ход работы: Граду
14399. Основные измерения с электронным осциллографом 342.5 KB
  Отчет по работе №130 Основные измерения с электронным осциллографом Цель работы: ознакомится с устройством осциллографа и выполнить различные измерения с его помощью. Приборы: осциллограф типа С15 вольтметр потенциометр проволочный реостат магазин сопроти
14400. Исследование магнитоэлектрического зеркального гальванометра 312.5 KB
  Отчет по работе №138 Исследование магнитоэлектрического зеркального гальванометра Цель работы: определить внутреннее сопротивление гальванометра среднюю чувствительность изучить зависимость периода колебаний логарифмического декремента затухания и време...