11126

Основы теории напряженного состояния

Реферат

Математика и математический анализ

Основы теории напряженного состояния. Напряжения в точке. Если мысленно вырезать вокруг какойнибудь точки тела элемент в виде бесконечного малого кубика то по его граням в общем случае будут действовать напряжения представленные на рис. 3.1. Совокупность нормальных...

Русский

2013-04-04

1.08 MB

54 чел.

Основы теории напряженного состояния.


Напряжения в точке.

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечного малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.1.

Совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим какую-либо точку называют напряженным состоянием тела в данной точке 

Рис. .

Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действуют девять компонентов напряжения. Запишем их в виде следующей квадратной матрицы:

,

где в первой, второй и третьей строках расположены составляющие напряжений соответственно на площадках, перпендикулярных к осям , , . Эта совокупность напряжений называется тензором напряжений.

Закон парности касательных напряжений. Главные площадки и главные напряжения.

Составим уравнение моментов всех сил, приложенных к элементарному параллелепипеду относительно оси . (рис. 3.1.).

Силы, параллельные этой оси и пересекающие ее, в уравнение не войдут. Моменты сил  на двух гранях, перпендикулярных оси , уравновешиваются, равно как и моменты сил  на верхней и нижней гранях элемента. Таким образом, получаем:

Отсюда следует, что .

Аналогично из двух других уравнений находим:

 

Итак, имеем равенства

 , (3.1)

называемые законом парности касательных напряжений 

Закон парности касательных напряжений – касательные напряжения на двух любых, но взаимно перпендикулярных площадках, направленные перпендикулярно к линии пересечения площадок, равны по величине. При этом они стремятся повернуть элемент в разные стороны.

При изменении ориентации граней выделенного элемента меняются также действующие на его гранях напряжения. Можно провести такие площадки, на которых касательные напряжения равны нулю. Площадки, на которых касательные напряжения равны нулю, называются главными площадками, а нормальные напряжения на этих площадках – главными напряжениями.

Можно доказать, что в каждой точке напряженного тела существует три главные взаимно перпендикулярные площадки.

Главные напряжения обозначают , , . При этом индексы следует расставлять так, чтобы выполнялось неравенство

>>.

Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным или объемным (рис.3.2, а).

Если равно нулю одно из главных напряжения, то напряженное состояние называется двухосным или плоским (рис.3.2, б).

Если равно нулю два главных напряжения, то напряженное состояние называется одноосным или линейным (рис.3.2, в).

Рис. .

Плоское напряженное состояние.

При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.

Рассмотрим элемент, грани которого являются главными площадками.

Рис. .

По ним действуют положительные напряжения  и , а третье главное напряжение  (направление  перпендикулярно к плоскости чертежа).

Проведем сечение II, которое определит площадку (), характеризуемую положительным углом . Напряжения  и  по этой площадке будут определяться по формулам:

(3.2)

(3.3)

Сжимающие главные напряжения подставляют в эти формулы со знаком «минус», а угол  отсчитывают от алгебраически большего главного напряжения.

Проведем сечение IIII, которое определит площадку , перпендикулярную площадке . Нормаль  к ней образует с направлением  угол

.

Подставив в формулы (3.2) и (3.3) значения угла , будем иметь

; (3.4)

. (3.5)

Совокупность формул (3.2) - (3.5) дает возможность находить напряжения по любым взаимно перпендикулярным наклонным площадкам, если известны главные напряжения.

Складывая равенства (3.2) и (3.4), обнаруживаем, что

, (3.6)

т. е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам не зависит от угла наклона этих площадок и равна сумме главных напряжений.

Из формул (3.3) и (3.5) видим, что касательные напряжения достигают наибольшей величины при , т. е. по площадкам, наклоненным к главным площадкам под углом , причем

. (3.7)

Сравнивая формулы (3.3) и (3.5), находим, что

(3.8)

Это равенство выражает закон парности касательных напряжений.

Проведем теперь еще два сечения (рис. 3.3): Сечение ІІІ – ІІІ, параллельное І – І, и сечение ІV – ІV, параллельное ІІ – ІІ. Элемент , выделенный четырьмя сечениями из элемента  (рис. 3.4, а), будет иметь вид, показанный на рис 3.4, б. Оба элемента определяют одно и то же напряженное состояние, но элемент  представляет его главными напряжениями, а элемент  - напряжениями на наклонных площадках.

Рис. .

В теории напряженного состояния можно разграничить две основные задачи.

Прямая задача. В точке известны положения главных площадок и соответствующие им главные напряжения; требуется найти нормальные и касательные напряжения по площадкам, наклоненным под заданным углом  к главным.

Обратная задача. В точке известны нормальные и касательные напряжения, действующие в двух взаимно перпендикулярных площадках; требуется найти главные направления и главные напряжения. Обе задачи можно решать как аналитически, так и графически.

Прямая задача в плоском напряженном состоянии. Круг напряжений (круг Мора).

Аналитическое решение прямой задачи дается формулами (3.2) – (3.5).

Проанализируем напряженное состояние, воспользовавшись простым графическим построением. Для этого введем в рассмотрение геометрическую плоскость и отнесем ее к прямоугольным координатным осям  и . Порядок расчета опишем на примере напряженного состояния, изображенного на рис. 3.5, а.

Выбрав для напряжений некоторый масштаб, откладываем на оси абсцисс (рис 3.5, б) отрезки

 

На  как на диаметре строим окружность с центром в точке . Построенный круг носит название круга напряжений или круга Мора.

Рис. .

Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Так, для определения напряжения на площадке, проведенной под углом  (рис. 3.5, а) из центра круга  (рис 3.5, б) проводим луч под углом  до пересечения с окружностью в точке  (положительные углы откладываем против часовой стрелки). Абсцисса точки (отрезок ) равна нормальному напряжению , а ордината ее (отрезок ) – касательному напряжению .

Напряжение на площадке, перпендикулярной к рассмотренной, найдем, проведя луч под углом  и получив в пересечении с окружностью точку . Очевидно, ордината точки  соответствует касательному напряжению , а абсцисса точки  - нормальному напряжению .

Проведя из точки  линию, параллельную  (в нашем случае горизонталь), до пересечения с кругом, найдем полюс – точку . Линия, соединяющая полюс с любой точкой круга, параллельна направлению нормального напряжения на площадке, которой эта точка соответствует. Так, например, линия  параллельна главному напряжению . Очевидно, что линия  параллельна направлению главного напряжения .

Обратная задача в плоском напряженном состоянии.

При практических расчетах обычно определяют нормальные и касательные напряжения на некоторых двух взаимно перпендикулярных площадках. Пусть, например, известны напряжения , , ,  (рис. 3.6, а). По этим данным требуется определить величины главных напряжений и положение главных площадок.

Сначала решим эту задачу графически. Примем, что >, а >.

В геометрической плоскости в системе координат  нанесем точку , с координатами ,  и точку  с координатами ,(рис. 3.6, б). Соединив точки  и , находим центр круга – точку  - и радиусом  проводим окружность. Абсциссы точек ее пересечения с осью  - отрезки  и  - дадут соответственно величины главных напряжений  и .

Для определения положения главных площадок найдем полюс и воспользуемся его свойством. Проведем из точки  линию параллельно линии действия напряжения , т. е. горизонталь. Точка  пересечения этой линии с окружностью и является полюсом. Соединяя полюс  с точками  и , получим направления главных напряжений. Главные площадки перпендикулярны к найденным направлениям главных напряжений.

Рис. .

Используем построенный круг для получения аналитических выражений главных напряжений  и :

(3.9)

(3.10)

Формула (3.10) определяет единственное значение угла , на который нужно повернуть нормаль , чтобы получить направление алгебраически большего главного напряжения. Отрицательному значению  соответствует поворот по часовой стрелке.

Если одно из главных напряжений окажется отрицательным, а другое положительным, то их следует обозначать  и . Если оба главных напряжения окажутся отрицательными, то их следует обозначать  и .


 

А также другие работы, которые могут Вас заинтересовать

32749. Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность 50.5 KB
  Следовательно события одновременные в одной инерциальной системе отсчета не являются одновременными в другой системе отсчета т. Относительность промежутков времени Пусть инерциальная система отсчета K покоится а система отсчета K0 движется относительно системы K со скоростью v. Тогда интервал времени между этими же событиями в системе K будет выражаться формулой: Это эффект замедления времени в движущихся системах отсчета. Относительность расстояний Расстояние не является абсолютной величиной а зависит от скорости движения тела...
32750. Релятивистский закон преобразования скорости. Релятивистский импульс 34 KB
  Релятивистский закон преобразования скорости. Пусть например в системе отсчета K вдоль оси x движется частица со скоростью Составляющие скорости частицы ux и uz равны нулю. Скорость этой частицы в системе K будет равна С помощью операции дифференцирования из формул преобразований Лоренца можно найти: Эти соотношения выражают релятивистский закон сложения скоростей для случая когда частица движется параллельно относительной скорости систем отсчета K и K'. Если в системе K' вдоль оси x' распространяется со скоростью u'x = c световой...
32751. Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии 43.5 KB
  Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии. Закон взаимосвязи массы и энергии. Для получения релятивистского выражения для кинетической энергии используем её связь с работой силы а силу подставим из релятивистской формы основного закона динамики материальной точки...
32752. Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда 51 KB
  Уравнение свободных колебаний без трения: пружинный маятник. Это уравнение называют уравнением свободных колебаний пружинного маятника. Оно правильно описывает рассматриваемые колебания лишь тогда когда выполнены следующие предположения: 1силы трения действующие на тело пренебрежимо малы и поэтому их можно не учитывать; 2 деформации пружины в процессе колебаний тела невелики так что можно их считать упругими и в соответствии с этим пользоваться законом Гука. Эта формула показывает что частота свободных колебаний не зависит от начальных...
32753. Физические и математические маятники 57 KB
  9 Как видим период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний. В отличие от математического маятника массу такого тела нельзя считать точечной. Будем считать что вес физического маятника приложен к его центру тяжести в точке С. С учетом всех величин входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид: 7.
32754. Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний 54 KB
  Свободные колебания такой системы представляют собой периодическое движение около положения равновесия гармонические колебания. Если трение не слишком велико то система совершает почти периодическое движение синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Если осциллятор предоставлен сам себе то говорят что он совершает свободные колебания. Если же присутствует внешняя сила зависящая от времени то говорят что осциллятор испытывает вынужденные колебания.
32755. Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность 92.5 KB
  Уравнение затухающих колебаний и его решение. Закон затухания колебаний определяется свойствами колебательных систем. Дифференциальное уравнение свободных затухающих колебаний линейной системы где s колеблющаяся величина описывающая тот или иной физический процесс δ = const коэффициент затухания ω0 циклическая частота свободных незатухающих колебаний той же колебательной системы т.1 в случае малых затуханий где Период затухающих колебаний с учетом формулы 7.
32756. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний 60 KB
  Уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Перейдем теперь к pассмотpению колебаний в системе на которую действует переменная во времени внешняя сила Ft. Такие колебания называют вынужденными в отличие от свободных колебаний pассмотpенных ранее.
32757. Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний 54.5 KB
  Явление возрастания амплитуды колебаний при приближении частоты вынуждающей силы w к собственной частоте колебательной системы w0 называется резонансом. При наличии трения резонансная частота несколько меньше собственной частоты колебательной системы. Другие механические системы могут использовать запас потенциальной энергии в различных формах.2 Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы частоты вынуждающего переменного напряжения к частоте равной или близкой собственной частоте...