1113

Импульсные диоды

Доклад

Физика

Процессы в импульсном диоде. Работа импульсного диода. Материалы с высокой подвижностью носителей. Пример применения импульсного диода. Форма напряжения на нагрузочном сопротивлении.

Русский

2013-01-06

38.5 KB

214 чел.

Импульсные диоды.

Это обычные диоды, с обычной ВАХ, однако работающие в режиме переключения. Их область применения – цифровые схемы, элементы которых находятся либо в открытом состоянии «0», либо в закрытом «1». Поэтому в этом приложении представляют  интерес временные параметры диода: как быстро он переходит из закрытого в открытое состояние и наоборот.  На рис. показан импульсный диод на основе несимметричного контакта. Примем условие, что эмиттер имеет n – проводимость. Это дает основание рассматривать поведение и ток только электронов. При обратной несимметрии вся сказанное будет относиться к дыркам.

Рассмотрим процессы при переключении. Подадим на него прямое напряжение – идеальную ступень, рис. а). первоначально начнут движение электроны обладающие наибольшей энергией, находящиеся непосредственно вблизи p-n перехода, далее к ним присоединятся те, которые находятся внутри n области. Таким образом, из за различия энергий носителей постепенно увеличивается их число, постепенно увеличивается и прямой ток. Этот процесс во времени показан на рис. б), а для оценки вводится параметр tуст – время установления открытого состояния. При большом времени ток не меняется и в области «p» перехода скапливается большое количество неосновных носителей, электронов. Возникает неравновесная концентрация носителей в p области кристалла.

Подадим на переход столь же резко изменяющуюся обратную полярность напряжения. Неравновесные электроны накопившиеся в «p» области начнут выводится под действием электрического поля в «n» область. Концентрация их велика, поэтому обратный ток в течении какого – то времени будет большим. Эта стадия процесса показана на рис. б), как t1. в конце концов , процесс вывода закончится, переход становится в закрытое состояние. Теперь есть две полупроводящие области p и n b и слой диэлектрика между ними. Это конденсатор, который начинает заряжаться под действием обратного напряжения. Ток заряда будет уменьшаться по закону экспоненты, на рис. б) это время t2. В целом время восстановления закрытого состояния равно t1+t2=tвосст.

                                  

                                        Рис. Импульсный диод

                             

                      Рис. Процессы в импульсном диоде.

      Обычно  tвосст.  >> чем tвосст. Для улучшения параметров диода для изготовления используются материалы с высокой подвижностью носителей (Ge), площадь перехода делают маленькой, применяют p-i-n структуры. Пример применения импульсного диода приведен на рис. Форма напряжения на нагрузочном сопротивлении повторяет форму тока на рис.

Рис. Работа импульсного диода


 

А также другие работы, которые могут Вас заинтересовать

19212. Электромагнитные ускорители плазмы. МГД приближение для описания динамики 269 KB
  Лекция 8 VIII. Плазменные ускорители. Электромагнитные ускорители плазмы. МГД приближение для описания динамики. Одножидкостная модель. Магнитное давление. Равновесие плазменной границы. Рельсотрон. 8.1. МГД приближение. Для описания ускорения плазмы магни...
19213. Термоэлектронная эмиссия. Статистический и термодинамические вывод формулы плотности тока термоэлектронной эмиссии 557.5 KB
  Лекция № 9. Термоэлектронная эмиссия. Статистический и термодинамические вывод формулы плотности тока термоэлектронной эмиссии. Влияние внешнего электрического поля Эффект Шоттки. Распределение термоэлектронов по энергиям. Средняя энергия термоэлектронов. Эксп
19214. Влияние поверхностной неоднородности материала катода на термоэмиссию 557 KB
  Лекция № 10. Влияние поверхностной неоднородности материала катода на термоэмиссию. Пленочные катоды. Оксидные катоды. Автоэлектронная эмиссия. Изменение температуры эмиттера при термо и автоэлектронной эмиссии. 9.7. Влияние поверхностной неоднородности материала...
19215. Фотоэлектронная эмиссия. Законы Столетова и Эйнштейна. Теория фотоэмиссии 476 KB
  Лекция № 11. Фотоэлектронная эмиссия. Законы Столетова и Эйнштейна. Теория фотоэмиссии. Кривая Фаулера. Применение фотоэмиссии в технике. Фотокатоды. XI. ФОТОэлектронная эмиссия. 11.1. Законы фотоэффекта. В широком смысле фотоэффект это возникновение или измене
19216. Вторичная электрон-электронная эмиссия. Отражение электронов от твердого тела 326 KB
  Лекция № 12. Вторичная электронэлектронная эмиссия. Отражение электронов от твердого тела. Характеристические потери энергии. Закономерности истинной вторичной электронной эмиссии. Приведенная кривая. Эффективные эмиттеры вторичных электронов. XII. вторичная элек
19217. Вторичная электронная эмиссия полупроводников и диэлектриков. Эффективные эмиттеры вторичных электронов 336.5 KB
  Лекция № 13. Вторичная электронная эмиссия полупроводников и диэлектриков. Эффективные эмиттеры вторичных электронов. Электронные умножители. Вторичная ионноэлектронная эмиссия. Потенциальная и кинетическая эмиссия их физический механизм. Закономерности ионноэлек
19218. Поверхностная ионизация. Формула Саха-Ленгмюра. Температурная зависимость плотности тока положительной ионизации 217 KB
  Лекция № 14. Поверхностная ионизация. Формула СахаЛенгмюра. Температурная зависимость плотности тока положительной ионизации. Термодинамичсекий вывод формулы СахаЛенгмюра. Термодинамичсекий вывод формулы СахаЛенгмюра. Отрицательная поверхностная ионизация. XIV...
19219. Ионное распыление. Диссипация энергии атомных частиц при взаимодействии с твердым телом 288.5 KB
  Лекция № 15. Ионное распыление. Диссипация энергии атомных частиц при взаимодействии с твердым телом. Торможение быстрых частиц в твердом теле. Эмиссия атомных частиц. XV. ИОННОЕ распыление 15.1. Характеристики ионного распыления. Явление распыления твердого ...
19220. ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ 163 KB
  ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ Плазму как среду состоящую из заряженных частиц характеризует степень ионизации или соотношение между количеством заряженных и нейтральных частиц: концентрация электронов конц...