11131

Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения

Реферат

Математика и математический анализ

Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения Определение перемещений при изгибе методом начальных параметров Определение перемещений методом непосредственного интегрирования дифференциаль...

Русский

2013-04-04

396 KB

119 чел.

Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения

Определение перемещений при изгибе методом начальных параметров

Определение перемещений методом непосредственного интегрирования дифференциального уравнения упругой линии в случае балок с большим количеством участков сопряжено со значительными трудностями в определении большого количества постоянных интегрирования.

Для уменьшения большой вычислительной работы в настоящее время разработан ряд методик. К ним относится и метод начального интегрирования.

Рис. 2.1.

Рассмотрим некоторую часть балки длиной  (рис. 2.1.1,а), проведя сечения в точках  и . На рис. 2.1.1,б изображен этот отрезок, нагруженный следующими наиболее часто встречающимися нагрузками:

а) сосредоточенным моментом М в сечении с абсциссой ;

б) сосредоточенной силой  в сечении с абсциссой ;

в) равномерно распределенной нагрузкой  от сечения с абсциссой  до сечения с абсциссой .

г) кроме того, по концам рассматриваемой части балки приложены поперечные силы и изгибающие моменты, заменяющие действие мысленно отброшенных частей балки.

Начало координат выбираем в крайней левой точке рассматриваемой балки и делаем его общим для всех участков балки.

Возьмем произвольное сечение на расстоянии  от начала координат.

При выводе уравнений направления всех нагрузок выбраны так, чтобы они вызывали положительные изгибающие моменты.

Выражения для изгибающих моментов будем составлять, рассматривая нагрузки слева от сечения с координатой . При включении в уравнения внешнего сосредоточенного момента  умножим его на множитель , равный единице. В случае обрыва распределенной нагрузки ее продлевают до конца рассматриваемого сечения, а для восстановления действительных грузовых условий вводят «компенсирующую» нагрузку».

Интегрирование будем производить, не раскрывая скобок.

Составляем выражение изгибающего момента для сечения с координатой

Составим дифференциальное уравнение упругой линии

Интегрируем обе части равенства, не раскрывая скобок

Очевидно, что для

;

Следовательно, константы интегрирования  и  при подстановке начальных условий будут равны углу поворота и прогибу в начале координат. Прогиб  и угол поворота  являются начальными параметрами.

Для случая нескольких моментов и сил, а также нескольких участков распределенной нагрузки уравнение записывают в следующей форме:

Данное уравнение обычно называют универсальным уравнением упругой линии.

Дифференцируя универсальное уравнение прогибов, получаем уравнение углов поворота сечений

В универсальные уравнения подставляются только те нагрузки, которые расположены слева от рассматриваемого сечения. Началом координат  принимается крайнее левое сечение балки.

Таким образом, определение перемещений по методу начальных параметров сводится в первую очередь к определению величин начальных параметров  и , которые определяются из условий закрепления балки.

Определим прогиб и угол поворота сечения свободного конца консольной балки, нагруженной распределенной нагрузкой  (Рис. 2.1.2).

Рис. 2.1.

В защемлении при заданной нагрузке будет возникать реакция  и реакционный момент .

Очевидно, что при данном виде закрепления

;  

Подставляем нагрузки в универсальные уравнения.

Для

Для

Расчет балок переменного сечения на прочность и жесткость.

До сих пор мы рассматривали расчет на изгиб стержней, сечение которых оставалось постоянным по длине. По конструктивным соображениям стержни, работающие на изгиб, часто имеют конусность, отверстия, выточки, ступеньки и т. д.

С точки зрения расчета на прочность и жесткость все такие стержни можно разделить на три основные группы:

а) стержни, имеющие местные изменения формы и размеров сечений (рис. 2.1.3, а).

Рис. 2.1.

б) стержни ступенчато-переменного сечения (Рис. 2.1.3, б);

в) стержни, имеющие непрерывно изменяющиеся по длине размеры сечений.

Разумеется, есть много деталей, в которых сочетаются различные виды нарушения размеров.

Перейдем к рассмотрению каждой группы в отдельности.

Местные изменения формы и размеров сечений вызывают резкое и значительное изменение картины распределения напряжений и деформаций. Однако это изменение носит местный характер и на напряженное состояние и деформированное состояние стержня в целом влияет незначительно.

Для высокопластичных материалов (малоуглеродистые стали, алюминий, медь) и хрупких неоднородных материалов (чугунов) концентрацию напряжений можно не учитывать и условие прочности запишется в обычном виде:

;

Для однородных хрупких материалов (высокопрочные закаленные стали)

,

где  - теоретический коэффициент концентрации, определяемый по справочным таблицам.

В обеих формулах  - это момент сопротивления ослабленного сечения.

Ступенчатые стержни будут иметь концентраторы напряжений в местах сопряжения участков с различными размерами поперечного сечения. При чувствительности материала к концентрации напряжений необходимо проверять условие прочности для соответствующих сечений с учетом коэффициента .

Для определения перемещений в ступенчатом стержне можно пользоваться видоизмененным методом начальных параметров. Рассмотрим на примере использование данного метода.

Балка на Рис. 2.1.4. имеет два участка постоянного поперечного сечения. Преобразуем заданную ступенчатую балку в эквивалентную балку постоянного сечения с моментом инерции , равным моменту инерции одного из участков балки, например первого.

Разрезаем балку в местах изменения размеров поперечного сечения и прикладываем в местах разрезов соответствующие внутренние силовые факторы -  и .

Умножаем нагрузку на каждом участке на коэффициент приведения

Соединяем отдельные части, получаем эквивалентную балку постоянного сечения. Эта балка будет нагружена приведенными внешними нагрузками и дополнительными силами  и моментами  в местах сопряжения участков. Для определения перемещений в полученной эквивалентной балке можно использовать универсальное уравнение упругой линии.

Стержни с непрерывно меняющимися по длине размерами поперечного сечения при незначительном угле наклона образующей к оси стержня (до 15 – 20 °) рассчитывают с использованием обычного условия прочности

и дифференциального уравнения упругой линии

Расчет на прочность и жесткость осложняется тем, что момент сопротивления и момент инерции сечения являются функциями абсциссы  сечения.

Частным случаем балок с непрерывно меняющимися по длине размерами являются балки равного сопротивления изгибу, во всех сечениях которого максимальное напряжение равно допускаемому

.

Отсюда получают уравнение для определения размеров балки равного сопротивления:

Для прямоугольного поперечного сечения с постоянной шириной сечения  и переменной высотой сечения  балка равного сопротивления показана на рис. 2.1.5.

Балка равного сопротивления параболического очертания наиболее рациональна с точки зрения экономии материала, однако из-за сложности формы не удовлетворяет техническим требованиям. Поэтому на практике применяют не балки равного сопротивления, а близкие к ним ступенчатые стержни.


 

А также другие работы, которые могут Вас заинтересовать

77326. RiDE.L – programming language 12 KB
  Kosenko IMM UrB RS USU Yekterinburg With time ti is getting hrder to develop softwre for highperformnce computing HPC; the min reson for tht is the complexity grow of hrdwre rchitectures mthemticl models dt structures nd lgorithms complexity which re pplied in lrge computtions. The lnguges with clssicl compiler rchitectures trditionlly used in HPC: C C FORTRN Pscl – re not so good t hndling tht complexity s lter lnguges: Hskell JvScript Oz Ruby. The best in tht Hskell GHC even when breking hrmonious syntx nd semntic...
77327. DATAFLOW BASED DISTRIBUTED COMPUTING METHODS. SYSTEM PROTOTYPE 20.5 KB
  Different methods re pplied to simplify the progrmming nd execution of prllel progrms. On the one hnd universl tools for utomtic progrm prlleliztion both for execution on shred memory nd for multicomputer systems re being developed. The gol of tht design is to simplify prllel progrm development but without significnt loss in the effectiveness of the progrm codes execution. Term tsk nmes the progrm which reds during its execution the dt items with specific nmes from storge nd s the result...
77328. IMPROVING THE DEVELOPMENT OF VISUALIZATION SOFTWARE 30.5 KB
  Visuliztion helps to interpret results of vrious stges of clcultions. However there is problem of developing of visuliztion tools exist. To explin tht let’s see which types of visuliztion tools re: Universl visuliztion systems cpble to disply visul objects of vrious clsses.
77330. Возможности оценки сложности параллельного программирования 71.5 KB
  Утверждение о том, что параллельное программирование сложно, стало общим местом в соответствующей специальной литературе еще с 80-ых годов XX века. Вместе с тем, необходимо разобраться, чем же оно сложно и как в этом плане соотносятся различные парадигмы параллельного программирования. Анализ сложности программирования полезен
77331. Веб-система визуализации, анализа и мониторинга работы программ 39.5 KB
  Визуализация процесса и параметров работы программ представляет известный интерес для разработчиков этих программ. В научном плане эти вопросы изучает область визуализация программного обеспечения которая особенно активно развивается на западе. Система предназначена для визуализации анализа и мониторинга работы программных комплексов включая и параллельные программы.
77332. EXECUTION TRACE VISUALIZATION FOR PARALLEL PROGRAMS 26.5 KB
  There re mny interesting systems bsed on execution trce visuliztion. In the report s the review of existing decisions s new pproches to development of execution trce visuliztion will be considered. However the min problem tht occurs when you develop trce visuliztion system is the huge nd evergrowing volume of dt to be nlyzed.
77334. «Хороший» интерфейс на основе жестов для манипулирования 3D-объектами и метод автоматической калибровки оптических камер 38 KB
  Интерфейс фонарика Поскольку любой манипулятор ограничивает набор возможных взаимодействий от него следует отказаться и осуществлять пользовательский ввод при помощи трёхмерных жестов. Данное устройство обладая шестью степенями свободы позволяет осуществлять ввод трёхмерных жестов являясь при этом простым в установке и использовании. В качестве дешёвого манипулятора для ввода трёхмерных жестов был выбран обыкновенный карманный фонарик.