11132

Определение перемещений в упругих системах. Общие понятия

Реферат

Математика и математический анализ

Определение перемещений в упругих системах. Общие понятия Обобщенные силы и перемещения Ранее нами были рассмотрены некоторые частные способы определения перемещений удобные при решении простейших задач. Начало возможных перемещений и закон сохранения энергии по...

Русский

2013-04-04

632 KB

22 чел.

Определение перемещений в упругих системах. Общие понятия


Обобщенные силы и перемещения

Ранее нами были рассмотрены некоторые частные способы определения перемещений, удобные при решении простейших задач.

Начало возможных перемещений и закон сохранения энергии позволили получить другие методы определения перемещений в стержневых системах.

Как известно из теоретической механики, работа постоянной силы  на перемещении  по ее направлению равна произведению величины силы на указанное перемещение:

В задачах сопротивления материалов и строительной механики внешняя нагрузка отличается большим разнообразием и обычно представляет собой группы сил. Выражение для работы группы постоянных сил также можно представить в виде произведения двух величин

, (2.2.1)
в котором множитель  зависит только от сил группы и называется обобщенной силой, а  зависит от перемещений и называется обобщенным перемещением.

Таким образом, под обобщенной силой будем понимать любую нагрузку (сосредоточенные силы, сосредоточенные пары, распределенную нагрузку), а под обобщенным перемещением — тот вид перемещения, на котором обобщенная сила производит работу.

Рассмотрим некоторые примеры часто встречающихся обобщенных сил и обобщенных перемещений.

1. На рис. 2.2.1 показана обобщенная сила, состоящая из двух равных по величине противоположных сил , приложенных в точках  и  и направленных по одной прямой. Предположим. Что точки приложения сил  и  переместились в направлении  на отрезки  и . Очевидно, работа системы постоянных сил на этих перемещениях

, (2.2.2)

где  - изменение расстояния  между точками приложения сил.

Рис. 2.2.

Следовательно,  в данном случае – обобщенная сила, а изменение  длины отрезка  - обобщенное перемещение.

2. Пусть группа сил состоит из двух пар сил, момент каждой из которых  (рис. 2.2.2). Допустим, что элемент  повернулся на угол , а элемент  на угол .

Рис. 2.2.

Легко убедиться, что обобщенной силой является момент пары , а обобщенным перемещением – изменение угла  между элементами  и :

Рассматривая достаточно жесткие конструкции, деформации которых следуют закону Гука, можно на основании принципа независимости действия сил определить полные перемещения точек как сумму перемещений, вызванных отдельными нагрузками.

Рис. 2.2.

Для показанной на рис. 2.2.3 балки прогиб и угол поворота сечения  можно записать в виде

(2.2.3)

где  - полное перемещение сечения  в направлении действия силы ;

- перемещение сечения  в направлении действия силы  от действия силы ;

- перемещение сечения  в направлении действия силы  от действия силы ;

- перемещение сечения  в направлении действия силы  от действия момента ;

- полное перемещение сечения  по направлению пары  (угол поворота).

- перемещение сечения  в направлении действия пары  от действия силы ;

- перемещение сечения  в направлении действия пары  от действия силы ;

- перемещение сечения  в направлении действия пары  от действия пары ;

Перемещение, вызванное единичной силой () или единичной парой (), будем обозначать буквой  и называть удельным. При этом условимся считать единичные силы и единичные пары, вызывающие перемещения , безразмерными.

Если единичная сила  вызвала удельное перемещение , то на основании принципа независимости действия сил полное перемещение, вызванное силой ,

(2.2.4)

Работа внешних сил.

При деформации конструкций происходит перемещение точек приложения внешних сил, при этом внешние силы на заданных перемещениях совершают работу.

Вычислим работу некоторой обобщенной силы  (рис. 2.2.4), которая возрастает от нуля до заданной величины достаточно медленно, чтобы можно было пренебречь силами инерции перемещаемых масс. Такую нагрузку принято называть статической.

Рис.2.2.

Пусть в произвольный момент деформации силе  соответствует обобщенное перемещение . Бесконечно малое приращение силы на величину  вызовет бесконечно малое приращение перемещения . Очевидно, что элементарная работа внешней силы, если пренебречь бесконечно малыми величинами второго порядка,

Полная работа, совершенная статически приложенной обобщенной силой , вызвавшей обобщенное перемещение ,

. (2.2.5)

Полученный интеграл представляет собой площадь диаграммы , которая для линейно деформированных систем является площадью треугольника с основанием окончательного значения перемещения  и высотой окончательного значения силы

(2.2.6)

Рис. 2.2.

Таким образом, действительная работа при статическом действии обобщенной силы на упругую систему равна половине произведения окончательного значения силы на окончательное значение соответствующего ей обобщенного перемещения (теорема Клапейрона).

В случае статического действия на упругую систему нескольких обобщенных сил работа деформаций равна полусумме произведений окончательного значения каждой силы на окончательное значение соответствующего суммарного перемещения

(2.2.7)

и не зависит от порядка нагружения  системы.

Работа внутренних сил.

Внутренние силы, возникающие при деформировании упругих систем, также совершают работу.

Рассмотрим элемент стержня длиной  (рис. 2.2.6). В общем случае для плоского изгиба действие удаленных частей стержня на оставленный элемент выражается равнодействующими осевыми силами , поперечными силами  и изгибающими моментами . Эти усилия, показанные на рис 2.2.6 сплошными линиями, по отношению к выделенному элементу являются внешними.

Рис.2.2.

Внутренние силы, показанные штриховыми линиями, препятствуют деформации, вызываемой внешними силами, равны им по величине и обратны по направлению.

Вычислим работу, совершенную отдельно каждым внутренним силовым фактором.

Пусть элемент испытывает только действие осевых усилий, равномерно распределенных по сечению (рис. 2.2.6).

Рис. 2.2.

Удлинение элемента в результате этого

,

Работа, постепенно возрастающих от нуля до величины  внутренних сил на этом перемещении.

. (2.2.8)

Работа внутренних сил отрицательна, поэтому в полученной формуле стоит знак «минус».

Рассмотрим теперь элемент, находящийся под действием изгибающих моментов (рис. 2.2.8).

Взаимный угол поворота сечений элемента

.

Работа изгибающих моментов

. (2.2.9)

Рис. 2.2.

Работу постепенно возрастающих внутренних поперечных сил с учетом распределения касательных напряжений по поперечному сечению и на основании закона Гука можно записать в следующем виде

, (2.2.10)

где  - коэффициент, зависящий от формы поперечного сечения.

Если стержень подвергается кручению, элементарная работа постепенно возрастающих крутящих моментов

(2.2.11)

Наконец в общем случае действия на брус в сечениях имеем шесть внутренних силовых факторов, работу которых можно определить по формуле

(2.2.12)

Начало возможных перемещений

Начало возможных перемещений, являясь общим принципом механики, имеет важнейшее значение для теории упругих систем. Применительно к ним этот принцип можно сформулировать следующим образом: если система находится в равновесии под действием приложенной нагрузки, то сумма работ внешних и внутренних сил на возможных бесконечно малых перемещениях системы равна нулю.

, (2.2.13)

где  - внешние силы;  - возможные перемещения этих сил;  - работа внутренних сил.

Заметим, что в процессе совершения системой возможного перемещения величина и направление внешних и внутренних сил остаются неизменными. Поэтому при вычислении работ следует брать на половину, а полную величину произведения соответствующих сил и перемещений.

Рассмотрим два состояния какой-либо системы, находящейся в равновесии (рис. 2.2.9). В состоянии  система деформируется обобщенной силой  (рис. 2.2.9, а), в состоянии  - силой  (рис. 2.2.9, б).

Работа сил состояния  на перемещениях состояния , как и работа сил состояния  на перемещениях состояния , будет возможной.

(2.2.14)

Вычислим теперь возможную работу внутренних сил состояния  на перемещениях, вызванных нагрузкой состояния . Для этого рассмотрим произвольный элемент стержня длиной  в обоих случаях. Для плоского изгиба действие удаленных частей на элемент выражается системой усилий , ,  (рис. 2.2.10, а). Внутренние усилия имеют направления, противоположные внешним (показаны штриховыми линиями). На рис. 2.2.10, б показаны внешние усилия , , , действующие на элемент  в состоянии . Определим деформации, вызванные этими усилиями.

Очевидно удлинение элемента , вызванное силами

.

Работа внутренних осевых сил  на этом возможном перемещении

. (2.2.15)

Взаимный угол поворота граней элемента, вызванный парами ,

.

Работа внутренних изгибающих моментов  на этом перемещении

. (2.2.16)

Аналогично определяем работу поперечных сил  на перемещениях, вызванных силами

. (2.2.17)

Суммируя полученные работы, получаем возможную работу внутренних сил, приложенных к элементу  стержня, на перемещениях, вызванной другой, вполне произвольной нагрузкой, отмеченной индексом

(2.2.18)

Просуммировав элементарные работы в пределах стержня, получим полное значение возможной работы внутренних сил:

(2.2.19)

Применим начало возможных перемещений, суммируя работу внутренних и внешних сил на возможных перемещениях системы, и получим общее выражение начала возможных перемещений для плоской упругой стержневой системы:

(2.2.20)

Т. е., если упругая система находится в равновесии, то работа внешних и внутренних сил в состоянии  на возможных перемещениях, вызванных другой, вполне произвольной нагрузкой, отмеченной индексом , равна нулю.

Теоремы о взаимности работ и перемещений

Запишем выражения начала возможных перемещений для балки, показанной на рис. 2.2.9, приняв для состояния  в качестве возможных перемещения, вызванные состоянием , а для состояния  - перемещения, вызванные состоянием .

(2.2.21)

(2.2.22)

Так как выражения работ внутренних сил одинаковы, то очевидно, что

(2.2.23)

Полученное выражение носит название теоремы о взаимности работ (теоремы Бетти). Она формулируется следующим образом: возможная работа внешних (или внутренних) сил состояния  на перемещениях состояния  равна возможной работе внешних (или внутренних) сил состояния  на перемещениях состояния .

Применим теорему о взаимности работ к частному случаю нагружения, когда в обоих состояниях системы приложено по одной единичной обобщенной силе  и .

Рис. 2.2.11

На основании теоремы о взаимности работ получаем равенство

, (2.2.24)

которое носит название теоремы о взаимности перемещений (теоремы Максвелла). Формулируется она так: перемещение точки приложения первой силы по ее направлению, вызванное действием второй единичной силы, равно перемещению точки приложения второй силы по ее направлению, вызванному действием первой единичной силы.

Теоремы о взаимности работ и перемещений существенно упрощают решение многих задач при определении перемещений.

Пользуясь теоремой о взаимности работ, определим прогиб  балки посредине пролета при действии на опоре момента  (рис. 2.2.12, а).

Используем второе состояние балки – действие в точке 2 сосредоточенной силы . Угол поворота опорного сечения  определим из условия закрепления балки в точке В:

Рис. 2.2.12

Согласно теореме о взаимности работ

,

откуда

(2.2.25)


 

А также другие работы, которые могут Вас заинтересовать

37905. Исследования полупроводникового диода 566 KB
  С точки зрения зонной теории полупроводниками являются кристаллические вещества у которых при 0 К валентная зона полностью заполнена электронами а ширина запрещенной зоны невелика например для германия она равна 072 эВ. Выясним природу этих носителей на примере полупроводника из германия. Все атомы германия нейтральны и связаны друг с другом ковалентными связями. Чтобы создать проводимость необходимо разорвать хотя бы одну из связей удалив из атома германия электрон и перенеся его в какуюлибо другую кристаллическую ячейку где все...
37906. Изучение статических характеристик и определение коэффициента усиления транзистора 84.5 KB
  Инжекция носителей тока. Инжекция носителей тока В основе работы транзистора лежит явление полупроводников р и n типа рn переход к которому приложено внешнее электрическое поле в пропускном прямом направлении рис.1 В этом случае потенциальный барьер основных носителей на границе рn перехода снижается и под влиянием внешнего поля дырки переходят из р в n полупроводник а электроны в обратном направлении из n в р полупроводник и в цепи возникает прямой ток. Процесс рекомбинации происходит не...
37907. ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ 4.96 MB
  Электропроводность зависит от температуры структуры вещества и от внешних воздействий напряженности электрического поля магнитного поля облучения и т. Характер зависимости σ от температуры Т различен у разных веществ. Увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решетки на которых рассеиваются электроны и σ уменьшается. при более низких температурах когда влиянием тепловых колебаний на рассеяние электронов можно пренебречь сопротивление практически не зависит от температуры.
37908. Определение постоянной Планка методом задерживающего потенциала 120 KB
  Михайлов Определение постоянной Планка методом задерживающего потенциала: Методические указания к лабораторной работе № 80 по курсу общей физики Уфимск. Методические указания знакомят студентов с уравнением Эйнштейна для фотоэффекта и с методом задерживающего потенциала позволяющего определять постоянную Планка. Студентам предлагается экспериментально получить график зависимости задерживающего потенциала от частоты падающего на фотокатод света и вычислить постоянную Планка и работу выхода.
37909. ДИФРАКЦИЯ ЭЛЕКТРОНОВ 951 KB
  Гипотеза деБройля 4 2. Контрольные вопросы 11 Список литературы 11 ЭЛАБОРАТОРНАЯ РАБОТА № 85 ДИФРАКЦИЯ ЭЛЕКТРОНОВ Цель работы Изучение гипотезы деБройля о волновых свойствах микрочастиц. Определение длины волны деБройля электронов дифрагированных на образцах с кубической кристаллической решеткой. Теоретическая часть Гипотеза деБройля В 1924 г.
37910. Исследование зависимости теплового излучения абсолютно черного тела от температуры 104 KB
  Лабораторная работа № 86 Исследование зависимости теплового излучения абсолютно черного тела от температуры 1. Цель работы Исследование зависимости интегральной излучательной способности абсолютно черного тела от температуры и проверка выполнения закона СтефанаБольцмана. зависит от температуры тела. Для спектральной характеристики теплового излучения вводится понятие излучательной способности тела или спектральной плотности излучательности 2.
37911. Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом 338.5 KB
  16 Лабораторная работа № 66 Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом 1. Закон Малюса Из электромагнитной теории света вытекает что световые волны поперечны. Естественные источники света излучают волны неполяризованные. При взаимодействии света с веществом основное действие оказывает электрическая составляющая электромагнитного поля световой волны электрические взаимодействия сильнее магнитных.
37912. ИЗУЧЕНИЕ ДИСПЕРСИИ СВЕТА 641.5 KB
  2 угол при вершине которой т. преломляющий угол равен P падает световая волна частоты ω угол падения равен i1. Угол наименьшего отклонения δ преломляющий угол P и показатель преломления связаны между собой соотношением .2 Угол отклонения лучей призмой тем больше чем больше преломляющий угол призмы.
37913. ИЗУЧЕНИЕ ЯВЛЕНИЯ ПОГЛОЩЕНИЯ СВЕТА ВЕЩЕСТВОМ 1.85 MB
  13 ЛАБОРАТОРНАЯ РАБОТА № 68 ИЗУЧЕНИЕ Явления ПОГЛОЩЕНИЯ СВЕТА ВЕЩЕСТВОМ 1. Определение коэффициентов поглощения исследуемых растворов в зависимости от длины волны поглощаемого света. Явление поглощения света веществом можно объяснить как с точки зрения волновых представлений так и с точки зрения квантовых представлений. С точки зрения квантовых представлений удается вычислить собственные частоты колебаний атомов и молекул на основе спектров поглощения.