11134

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам

Реферат

Математика и математический анализ

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам. Статическая неопределимость. С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней работающими на чистое растяжениес

Русский

2013-04-04

606.5 KB

90 чел.

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам.


Статическая неопределимость.

С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней, работающими на чистое растяжение–сжатие.

Как уже указывалось, статически неопределимыми называются системы, силовые факторы в элементах которых только из уравнений равновесия определить нельзя. В таких системах связей больше, чем необходимо для равновесия.

Некоторые связи оказываются как бы лишними, а усилия в них – лишними неизвестными.

По числу лишних связей или лишних неизвестных усилий устанавливают степень статической неопределимости.

Рис.2.4.

На рис.2.4.1 показана жестко закрепленная в точке А балка, опирающаяся в точке В на шарнирно-подвижную опору.

Из трех уравнений статики определить четыре реакции (, , , ) определить нельзя. Одна из реакций как бы получается лишней. В таком случае система является один раз статически неопределимая.

Статическая неопределимость может быть результатом не только наличием лишних связей, но также и условием образования системы. Рассмотрим раму, показанную на рис 2.4.2. Очевидно, что реакции , ,  внешних связей легко определить из уравнений равновесия. Однако после этого условия равновесия не позволяют определить все силовые факторы в ее элементах. Таким образом, из трех уравнений статики необходимо определить шесть неизвестных усилий. Следовательно, система является три раза статически неопределимой.

Для определения усилий в статически неопределимых системах дополнительно к уравнениям статики составляют уравнения совместности деформаций.

Рассмотрим этапы расчета статически неопределимой системы:

Рис. 2.4.

  1.  Устанавливаем степень статической неопределимости (число лишних связей).
  2.  Удаляя лишние связи, заменяем исходную систему статически определимой, которая называется основной системой
  3.  Загружаем основную систему заданной нагрузкой и лишними неизвестными усилиями – такая система называется эквивалентной.
  4.  Приравниваем к нулю перемещения точек приложения неизвестных реакций по направлению их действия.

В качестве примера рассмотрим раскрытие статической неопределимости консольной балки (рис.2.4.3).

Защемление левого конца дает три реакции, шарнирно-подвижная опора – одну реакцию. Всего четыре реакции. Следовательно, балка один раз статически неопределимая. Для построения основной системы нужно устранить одну связь.

В качестве лишней связи выберем шарнирно-подвижную опору. Основная система, полученная в результате удаления лишней связи, представляет собой консоль.

Нагружаем основную систему заданной нагрузкой. Прогиб свободного конца балки по направлению неизвестной реакции

(2.4.1)

Рис. 2.4.

Нагружаем основную систему неизвестной реакцией  и определяем перемещение свободного конца балки от нагрузки  в направлении ее действия.

(2.4.2)

Сумма перемещений должна равняться нулю

(2.4.3)

Откуда

Зная одну неизвестную реакцию, из уравнений статики теперь легко можно определить неизвестные реакции.

Указанная схема расчета носит название метода сил, поскольку в качестве основных неизвестных здесь выбирают усилия лишних связей.

Построение внутренних силовых факторов для плоских рам.

Рамами называют системы, состоящие из прямолинейных стержней, соединенных жесткими узлами.

Вертикально расположенные стержни рамы принято называть стойками, горизонтальные – ригелями.

Ось рамы представляет собой ломаную линию, однако каждый прямолинейный участок ее можно рассматривать как балку. Поэтому, чтобы построить какую либо эпюру для рамы, нужно построить ее для каждой отдельной балки, входящей в состав рамы. В отличие от обыкновенных балок в сечениях стержней рамы, кроме изгибающих моментов М и поперечных сил Q, обычно действуют еще и продольные силы N. Следовательно, для рам нужно строить эпюры ,  и .

Для  и  сохраняются ранее принятые правила знаков:

, если продольные силы вызывают растяжение;

, если ее векторы стремятся вращать части рассеченной рамы (относительно центра тяжести сечения) по часовой стрелке.

Для изгибающего момента специального правила знаков не устанавливают, а при установлении выражений для  выбирают произвольно направление положительного момента.

Выражения для ,, и  записывают очень редко — главным образом для тех участков, где действует распределенная нагрузка. Чаще всего просто вычисляют значения ,  и  в характерных сечениях (на границах участков и в экстремальных точках), а затем проводят линии эпюр, учитывая особенности построения этих эпюр.

Ординаты эпюр, как и всегда, откладываем перпендикулярно к оси рамы, причем положительные ординаты  и с внешней стороны рамы, а отрицательные — с внутренней (если, конечно, рама такой конфигурации, что можно различить ее наружную и внутреннюю стороны). Эпюры М условимся и для рам строить на сжатых волокнах.

Рассмотрим пример построения эпюр внутренних силовых факторов для плоской рамы на рис. 2.4.4 a, нагруженной сосредоточенной парой , сосредоточенной силой  и равномерно распределенной нагрузкой интенсивностью . Расстояние м.

Рис. 2.4.

Так как рама имеет более одной опоры, то прежде чем приступить к построению эпюр, нужно найти опорные реакции (рис. 2.4.4 б).

; ; .

Эпюра «». Чтобы построить эпюру «», нужно спроецировать силы, приложенные к части рамы, лежащих по одну сторону от сечения, на ось стержня.

На участке :  (растяжение).

На участке (рассматриваем правую часть):

На участке (рассматриваем правую часть):

На участке :  (сжатие).

По этим данным строим эпюру «» (рис. 2.4.5)

Рис. 2.4.

Эпюра «». В сечении  стержня  (т. е. в сечении , бесконечно близком к ) имеем

, кН.

В сечении  стержня  

Для любого сечения на участке  сумма проекций лежащих справа сил на сечение одинакова и равна: , кН

Для любого сечения на участке  сумма проекций лежащих справа сил на сечение одинакова, равна  и дает отрицательную величину, т. к. сила  стремится повернуть сечение на  участке против часовой стрелки:

, кН.

Для любого сечения на участке  сумма проекций нижележащих сил на сечение равна нулю:

Эпюра «» представлена двумя прямоугольниками на ригеле рамы и треугольником на стойке (рис.2.4.6)

Рис. 2.4.

Эпюра «». Для построения эпюры «» будем вычислять величины изгибающих моментов в характерных сечениях , , . и .

Очевидно, что в точке : .

Очевидно и то, что в любом сечении стержня : .

В сечении  стержня  (т. е. в сечении , бесконечно близком к ) имеем

кН·м

Знак плюс в данном выражении мы выбирали, предполагая, что сжаты правые волокна. Получившийся знак минус при подстановке значения  говорит о том, что в сечении  стержня  будут сжаты волокна слева. Поэтому на эпюре «» из точки  откладываем влево координату, равную  кН·м.

Поперечная сила на участке  не меняет знак (не будет экстремальных значений на эпюре изгибающих моментов), поэтому для построения эпюры изгибающих моментов на данном участке проводим кривую второго порядка  выпуклостью навстречу направлению распределенной нагрузки (выпуклостью влево). Учитывая, что поперечная сила в точке  , касательная к эпюре моментов в этой точке параллельна оси участка (рис. 2.4.7).

В сечении  стержня  (в сечении , бесконечно близком к точке) изгибающий момент будет равен внешнему моменту :

кН·м.

Под действием момента  сжимаются нижние волокна, поэтому значение  кН·м будем откладывать вниз.

В сечении  стержня  (в сечении , бесконечно близком к точке) изгибающий момент будет равен

кН·м.

Положительный момент в сечении создавался внешним моментом , который сжимает нижние волокна. Поэтому положительное значение  кН·м откладываем из точки  вниз и проводим на эпюре «» прямую .

Так как в точке  отсутствует внешний сосредоточенный момент, в сечении  стержня  имеем ту же величину изгибающего момента, что и для сечения  стержня :

кН·м.

Рис. 2.4.

В сечении  стержня  (т. е. в сечении , бесконечно близком к ), приняв, что положительный будет такой изгибающий момент, который вызывает сжатие нижних волокон, имеем такое же выражение момента, что и для сечения  стержня

кН·м

Знак «минус» говорит о том, что в сечении   стержня  сжаты верхние волокна. Откладываем вверх координату, равную  кН·м и проводим на эпюре изгибающих моментов прямую .


 

А также другие работы, которые могут Вас заинтересовать

47393. Рисование как средство коррекции недостатков развития умственно отсталых детей 47.16 KB
  Развитие изобразительной деятельности связано с формированием у ребенка активного интереса к окружающему миру и предоставляет возможность ребенку отражать действительность. Лепка является первым основополагающим видом занятий необходимых для умственно отсталого ребенка на начальных этапах формирования изобразительной деятельности. В ходе выполнения аппликаций также создаются условия для формирования целенаправленной деятельности и развития общих интеллектуальных умений.
47394. Управління мотивацією персоналу на підприємстві 849.5 KB
  Сутність поняття мотивація структура мотивації праці. Впровадження бальної системи оплати праці та оцінка її ефективності. В умовах що склалися в Україні на нинішньому етапі її розвитку проблема мотивації персоналу набула важливого значення оскільки вирішення завдань які стоять перед суспільством можливе лише за умови створення належної мотиваційної основи здатної спонукати працівників підприємств до ефективної діяльності. На сьогодні матеріальне стимулювання працівників підприємств як основна складова частина загальної...
47395. Предложения по улучшению финансового состояния ООО ПК «РосМебель» 497.5 KB
  Краткая характеристика предприятия. Общая оценка финансового положения предприятия. Анализ ликвидности предприятия. Анализ деловой активности предприятия.
47396. Особенности развития памяти у младших школьников 759 KB
  Особенности развития памяти у детей младшего школьного возраста. Экспериментальное исследование особенностей развития памяти у младших школьников. Коррекционная работа направленная на развитие памяти.Рекомендации учителям и родителям по развитию памяти младших школьников .
47397. Национальный вопрос в Испании в Новейшее время 426 KB
  Показать борьбу национальных меньшинств за национально-территориальную автономию в 1918-1939 годах; рассмотреть национальную политику режима Франко в 1939-1975 годах; охарактеризовать децентрализацию государственного устройства Испании; выделить политико-правовое положение иммигрантов в Испании
47398. Изучение хозяйственно-ценных признаков у сортов озимой мягкой пшеницы 269.5 KB
  В воздушно-сухом зерне пшеницы содержится: белка. Зерно пшеницы используется для получения муки а также в крупяной макаронной и кондитерской промышленности 37. Велико и организационно-хозяйственное значение озимой пшеницы. Во-вторых более раннее созревание озимой пшеницы по сравнению с яровыми культурами уменьшает напряженность и уборочных работ дает возможность уйти от летней засухи.
47399. Особенности обработки зерна на примере ТОО “Пригородное” 586.5 KB
  Хозяйство расположено на территории со сложным рельефом: долины рек Шограш, Содимы, Емы и многочисленных ручьёв. По почвенно-геоботаническому районированию относится к подзоне средней тайги. Лесные массивы неоднородны, с преобладанием ели и берёзы; в подлеске – рябина, черёмуха и др.Почвенный покров хозяйства сложный.
47400. Современное положение пластиковых карт в России 731.5 KB
  Пластиковые карты как платежный инструмент. Держатель карты. Далее рассматривается процедура расчетов с использованием платежной карты. они выпускают и обслуживают карты международных национальных и локальных систем.
47401. Интернет-трейдинг в России и за рубежом: состояние и перспективы развития 335 KB
  Интернеттрейдинг в России и за рубежом: состояние и перспективы развития. Развитие Интернеттрейдинга в России. Функционирование систем Интернеттрейдинга: российский и зарубежный опыт. Интернеттрейдинг в России и за рубежом: состояние и перспективы развития.