11134

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам

Реферат

Математика и математический анализ

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам. Статическая неопределимость. С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней работающими на чистое растяжениес

Русский

2013-04-04

606.5 KB

86 чел.

Статическая неопределимость. Построение внутренних силовых факторов для плоских рам.


Статическая неопределимость.

С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней, работающими на чистое растяжение–сжатие.

Как уже указывалось, статически неопределимыми называются системы, силовые факторы в элементах которых только из уравнений равновесия определить нельзя. В таких системах связей больше, чем необходимо для равновесия.

Некоторые связи оказываются как бы лишними, а усилия в них – лишними неизвестными.

По числу лишних связей или лишних неизвестных усилий устанавливают степень статической неопределимости.

Рис.2.4.

На рис.2.4.1 показана жестко закрепленная в точке А балка, опирающаяся в точке В на шарнирно-подвижную опору.

Из трех уравнений статики определить четыре реакции (, , , ) определить нельзя. Одна из реакций как бы получается лишней. В таком случае система является один раз статически неопределимая.

Статическая неопределимость может быть результатом не только наличием лишних связей, но также и условием образования системы. Рассмотрим раму, показанную на рис 2.4.2. Очевидно, что реакции , ,  внешних связей легко определить из уравнений равновесия. Однако после этого условия равновесия не позволяют определить все силовые факторы в ее элементах. Таким образом, из трех уравнений статики необходимо определить шесть неизвестных усилий. Следовательно, система является три раза статически неопределимой.

Для определения усилий в статически неопределимых системах дополнительно к уравнениям статики составляют уравнения совместности деформаций.

Рассмотрим этапы расчета статически неопределимой системы:

Рис. 2.4.

  1.  Устанавливаем степень статической неопределимости (число лишних связей).
  2.  Удаляя лишние связи, заменяем исходную систему статически определимой, которая называется основной системой
  3.  Загружаем основную систему заданной нагрузкой и лишними неизвестными усилиями – такая система называется эквивалентной.
  4.  Приравниваем к нулю перемещения точек приложения неизвестных реакций по направлению их действия.

В качестве примера рассмотрим раскрытие статической неопределимости консольной балки (рис.2.4.3).

Защемление левого конца дает три реакции, шарнирно-подвижная опора – одну реакцию. Всего четыре реакции. Следовательно, балка один раз статически неопределимая. Для построения основной системы нужно устранить одну связь.

В качестве лишней связи выберем шарнирно-подвижную опору. Основная система, полученная в результате удаления лишней связи, представляет собой консоль.

Нагружаем основную систему заданной нагрузкой. Прогиб свободного конца балки по направлению неизвестной реакции

(2.4.1)

Рис. 2.4.

Нагружаем основную систему неизвестной реакцией  и определяем перемещение свободного конца балки от нагрузки  в направлении ее действия.

(2.4.2)

Сумма перемещений должна равняться нулю

(2.4.3)

Откуда

Зная одну неизвестную реакцию, из уравнений статики теперь легко можно определить неизвестные реакции.

Указанная схема расчета носит название метода сил, поскольку в качестве основных неизвестных здесь выбирают усилия лишних связей.

Построение внутренних силовых факторов для плоских рам.

Рамами называют системы, состоящие из прямолинейных стержней, соединенных жесткими узлами.

Вертикально расположенные стержни рамы принято называть стойками, горизонтальные – ригелями.

Ось рамы представляет собой ломаную линию, однако каждый прямолинейный участок ее можно рассматривать как балку. Поэтому, чтобы построить какую либо эпюру для рамы, нужно построить ее для каждой отдельной балки, входящей в состав рамы. В отличие от обыкновенных балок в сечениях стержней рамы, кроме изгибающих моментов М и поперечных сил Q, обычно действуют еще и продольные силы N. Следовательно, для рам нужно строить эпюры ,  и .

Для  и  сохраняются ранее принятые правила знаков:

, если продольные силы вызывают растяжение;

, если ее векторы стремятся вращать части рассеченной рамы (относительно центра тяжести сечения) по часовой стрелке.

Для изгибающего момента специального правила знаков не устанавливают, а при установлении выражений для  выбирают произвольно направление положительного момента.

Выражения для ,, и  записывают очень редко — главным образом для тех участков, где действует распределенная нагрузка. Чаще всего просто вычисляют значения ,  и  в характерных сечениях (на границах участков и в экстремальных точках), а затем проводят линии эпюр, учитывая особенности построения этих эпюр.

Ординаты эпюр, как и всегда, откладываем перпендикулярно к оси рамы, причем положительные ординаты  и с внешней стороны рамы, а отрицательные — с внутренней (если, конечно, рама такой конфигурации, что можно различить ее наружную и внутреннюю стороны). Эпюры М условимся и для рам строить на сжатых волокнах.

Рассмотрим пример построения эпюр внутренних силовых факторов для плоской рамы на рис. 2.4.4 a, нагруженной сосредоточенной парой , сосредоточенной силой  и равномерно распределенной нагрузкой интенсивностью . Расстояние м.

Рис. 2.4.

Так как рама имеет более одной опоры, то прежде чем приступить к построению эпюр, нужно найти опорные реакции (рис. 2.4.4 б).

; ; .

Эпюра «». Чтобы построить эпюру «», нужно спроецировать силы, приложенные к части рамы, лежащих по одну сторону от сечения, на ось стержня.

На участке :  (растяжение).

На участке (рассматриваем правую часть):

На участке (рассматриваем правую часть):

На участке :  (сжатие).

По этим данным строим эпюру «» (рис. 2.4.5)

Рис. 2.4.

Эпюра «». В сечении  стержня  (т. е. в сечении , бесконечно близком к ) имеем

, кН.

В сечении  стержня  

Для любого сечения на участке  сумма проекций лежащих справа сил на сечение одинакова и равна: , кН

Для любого сечения на участке  сумма проекций лежащих справа сил на сечение одинакова, равна  и дает отрицательную величину, т. к. сила  стремится повернуть сечение на  участке против часовой стрелки:

, кН.

Для любого сечения на участке  сумма проекций нижележащих сил на сечение равна нулю:

Эпюра «» представлена двумя прямоугольниками на ригеле рамы и треугольником на стойке (рис.2.4.6)

Рис. 2.4.

Эпюра «». Для построения эпюры «» будем вычислять величины изгибающих моментов в характерных сечениях , , . и .

Очевидно, что в точке : .

Очевидно и то, что в любом сечении стержня : .

В сечении  стержня  (т. е. в сечении , бесконечно близком к ) имеем

кН·м

Знак плюс в данном выражении мы выбирали, предполагая, что сжаты правые волокна. Получившийся знак минус при подстановке значения  говорит о том, что в сечении  стержня  будут сжаты волокна слева. Поэтому на эпюре «» из точки  откладываем влево координату, равную  кН·м.

Поперечная сила на участке  не меняет знак (не будет экстремальных значений на эпюре изгибающих моментов), поэтому для построения эпюры изгибающих моментов на данном участке проводим кривую второго порядка  выпуклостью навстречу направлению распределенной нагрузки (выпуклостью влево). Учитывая, что поперечная сила в точке  , касательная к эпюре моментов в этой точке параллельна оси участка (рис. 2.4.7).

В сечении  стержня  (в сечении , бесконечно близком к точке) изгибающий момент будет равен внешнему моменту :

кН·м.

Под действием момента  сжимаются нижние волокна, поэтому значение  кН·м будем откладывать вниз.

В сечении  стержня  (в сечении , бесконечно близком к точке) изгибающий момент будет равен

кН·м.

Положительный момент в сечении создавался внешним моментом , который сжимает нижние волокна. Поэтому положительное значение  кН·м откладываем из точки  вниз и проводим на эпюре «» прямую .

Так как в точке  отсутствует внешний сосредоточенный момент, в сечении  стержня  имеем ту же величину изгибающего момента, что и для сечения  стержня :

кН·м.

Рис. 2.4.

В сечении  стержня  (т. е. в сечении , бесконечно близком к ), приняв, что положительный будет такой изгибающий момент, который вызывает сжатие нижних волокон, имеем такое же выражение момента, что и для сечения  стержня

кН·м

Знак «минус» говорит о том, что в сечении   стержня  сжаты верхние волокна. Откладываем вверх координату, равную  кН·м и проводим на эпюре изгибающих моментов прямую .


 

А также другие работы, которые могут Вас заинтересовать

4585. Планування модельних експериментів. Стратегічне планування модельного експерименту 101 KB
  Планування модельних експериментів. Стратегічне планування модельного експерименту. Мета роботи: Ознайомитися з методами стратегічного планування імітаційних експериментів. Планування модельних експериментів Припустимо, три юні натураліст...
4586. Методи управління модельним часом: моделювання з постійним кроком і по особливих станах 101 KB
  Методи управління модельним часом: моделювання з постійним кроком і по особливих станах. Мета роботи: Вивчити методи управління модельним часом. Ознайомитися і програмно реалізувати алгоритми управління модельним часом з постійним кроком і по особли...
4587. Субтрактивне змішування кольорів. Диск Максвелла 38.52 KB
  Субтрактивне змішування кольорів. Диск Максвелла. Виконання роботи. Визначення координат ахроматичної точки. Підібрали такі розміри зовнішніх секторів з кольорами Cyan, Magenta, Yellow, що їх суміш дала ахроматичний колір. Отримали наступні коорд...
4588. Розрахунок припусків на механічну обробку оптичних деталей 47 KB
  Розрахунок припусків на механічну обробку оптичних деталей Мета роботи: Ознайомити студентів з методикою розрахунків припусків на розміри оптичних поверхонь деталей при їх обробці в оптичному виробництві. Завдання 1. Ознайомитись з видами припусків ...
4589. Інсталювання та налагодження мережевих компонент однорангової мережі Windows 9x. 103 KB
  Інсталювання та налагодження мережевих компонент однорангової мережі Windows 9x, Робота в одноранговій мережі. Керування доступом на рівні ресурсів. Використання спільних каталогів та мережевого принтера. Методичні вказівки з курсу Операційні ...
4590. Повышение эффективности разработки Приобского месторождения за счет оптимального подбора параметров работы электропогружных установок 3.05 MB
  Погруженные центробежные насосы (УЭЦН) в настоящее время являются одним из основных средств механизированной эксплуатации нефтяных скважин. На их долю приходится более 53% добываемой в России нефти и более 63% извлекаемой из скважин жидкости...
4591. Уточнения должностных функций, выполняемых менеджером по обучению персонала на предприятии ООО Техно-регион 183.99 KB
  Введение Развитие персонала является важнейшим условием успешного функционирования любой организации. Это особенно справедливо в современных условиях, когда ускорение научно-технического прогресса значительно убыстряет процесс устаревания профессион...
4592. Диссертация магистранта, аспиранта, докторанта 3.27 MB
  Настоящее пособие дает представление о специфике и месте диссертации магистранта, аспиранта и докторанта в системе научного исследования. В нем выделены этапы исследования, для каждого из которых разработаны ментальные карты, чем пособие выгодно отл...
4593. Особенности функционирования молодежных субкультур России XXI века 4.04 MB
  Введение Актуальность темы исследования. Актуальность изучения проблем становления и развития культуры молодежи как самой активной и быстро реагирующей на любые перемены социально-демографической группы общества определяется происходящими социокульт...