11141

Динамическое нагружение

Реферат

Математика и математический анализ

Динамическое нагружение. Понятие о динамическом действии нагрузки. Ранее во всех рассмотренных нами задачах предполагалось что действующие нагрузки статические т. е. не изменяющиеся стечением времени. При проектировании машин обычно сталкиваются с деталями находя

Русский

2013-04-05

485.5 KB

78 чел.

Динамическое нагружение.


Понятие о динамическом действии нагрузки.

Ранее во всех рассмотренных нами задачах предполагалось, что действующие нагрузки статические, т. е. не изменяющиеся стечением времени. При проектировании машин обычно сталкиваются с деталями, находящимися в неравномерном движении, что приводит к появлению инерционных нагрузок.

Примером статической нагрузки или статического действия нагрузки может послужить действие подвешенного на цепи груза. Это действие остается статическим, если груз будет подниматься цепью с постоянной скоростью. Но тот же груз, поднимаемый цепью с ускорением, будет действовать на цепь динамически. Для расчета цепи в данном случае мы должны учесть не только вес груза, но и силу инерции груза.

Для примера рассмотрим расчет равномерно вращающегося тонкого кольца (рис. 2.11.1, a)

Рис.2.11.

Для расчета примем следующие обозначения:

- средний радиус кольца;

- площадь поперечного сечения;

- удельный вес материала;

- угловая скорость кольца;

- ускорение силы тяжести.

Рассмотрим бесконечно малый элемент кольца массой , вырезанный двумя плоскостями, составляющими центральный угол  (рис. 2.11.1, б)

Элементарная сила инерции

(2.11.1)

Элементарная масса, выраженная через площадь сечения кольца

(2.11.2)

Элементарная сила инерции с учетом (2.11.02) будет равна

(2.11.3)

Для определения  продольной силы  в поперечном сечении кольца рассмотрим равновесие половины кольца под действием двух продольных сил  и суммы вертикальных составляющих элементарных сил инерций:

откуда

(2.11.4)

Полагая, что в тонком кольце все волокна растягиваются одинаково, найдем напряжение в сечении кольца

(2.11.5)

Определим теперь, на сколько удлинится радиус вращающегося кольца. Относительное удлинение волокон кольца равны:

Из закона Гука

Откуда

(2.11.6)

Удар

К динамическому  виду нагрузки относится так же ударная нагрузка. С явлением удара приходиться иметь дело, когда скорость рассматриваемого элемента конструкции или соприкасающихся с ним частей в очень короткий промежуток времени изменяется на конечную величину. Определение силы удара весьма затруднительно, так как неизвестно время соударения, поэтому в инженерной практике обычно пользуются энергетическим методом. В качестве примера рассмотрим систему с одной степенью свободы (, а), которая представляет собой пружину с коэффициентом жесткости  и падающий на нее груз массой  с высоты

Рис.2.11.

Груз  при касании пружины будет обладать кинетической энергией , которую можно выразить через скорость  груза в момент касания или высоту :

(2.11.7)

После того, как груз коснется пружины, он начет деформировать пружину. Кода вся кинетическая энергия груза перейдет в потенциальную энергию сжатой пружины, груз остановится (, б), пружина получит свою наибольшую динамическую деформацию , а сила, сжимающая пружину, достигнет максимума. При составлении энергетического баланса здесь нужно учитывать изменение потенциальной энергии  груза на динамической деформации :

. (2.11.8)

Упругая энергия  сжатой пружины

(2.11.9)

Составим энергетический баланс

или

,

который перепишем в следующем виде

(2.11.10)

Рассматривая статическое равновесие упругой системы (, в), отношение силы тяжести груза к жесткости пружины равно статической деформации пружины :

Получили квадратное уравнение, из которого динамическая деформация определится как

(2.11.11)

Поскольку знак минус в этом выражении не соответствует физической стороне рассматриваемой задачи, следует сохранить знак плюс. Запишем выражение (2.11.11) в виде

(2.11.12)

Величину, стоящую в скобках называют коэффициентом динамичности

(2.11.13)

Коэффициент динамичности, выраженный через скорость груза в момент касания пружины с учетом выражения (2.11.7) будет равен

(2.11.14)

Окончательно динамическая деформация пружины определится как

(2.11.15)

Динамический коэффициент показывает, во сколько раз деформация при ударе больше деформации при статическом приложении нагрузки. В том же отношении изменяются внутренние силы и напряжения:

(2.11.16)

Из анализа выражения (2.11.14) видно, что коэффициент динамичности зависит от кинетической энергии падающего груза. В случае, если груз опускается на упругую систему мгновенно без начальной скорости, динамическая деформация уже вдвое превышает статическую. Соответственно в два раза большими оказываются и напряжения.

Коэффициент динамичности, а, следовательно, и динамические напряжения, также зависят от жестокости упругой системы. При большей жесткости статические деформации имеют меньшие значения, а динамические напряжения при этом увеличиваются. Поэтому снижение напряжений при ударе может быть достигнуто уменьшением жесткости системы.

Зависимости для определения динамических напряжений и деформаций, полученные на примере падения груза на пружину применимы и для других упругих систем (расчет на удар при растяжении – сжатии, кручении и изгибе).

В каждом случае придерживаются следующего порядка расчета:

а) в месте падения груза к упругой системе прикладывают статическую нагрузку, равную весу падающего груза;

б) определяют статическую деформацию упругой системы;

в) определяют напряжения в материале, возникающие от приложения статической нагрузки;

г) определяют коэффициент динамичности;

д) определяют динамические напряжения и деформации.

е) сравнивают напряжения при ударе с допускаемыми напряжениями:

(2.11.17)

Обычно коэффициент запаса  принимают равным .

Полученные выше выражения получены без учета массы упругой системы, к которой прикладывается ударная нагрузка. Учет массы дает меньшие значения динамических напряжений, поэтому, рассчитывая конструкции без учета ее массы, мы получаем дополнительный запас прочности.

В некоторых случаях динамические напряжения не могут быть определены через коэффициент динамичности. Для примера рассмотрим стальной стержень, который падает с высоты  таким образом, что, оставаясь горизонтальным, он ударяется о жесткие опоры. Длина стержня , диаметр , удельный вес материала .

Рис.2.11.

Полагаем, что вся кинетическая энергия , запасенная падающим стержнем до достижения им опор, полностью перейдет в энергию деформации  стержня.

Потенциальная энергия деформации

Изгибающий момент в произвольном сечении балки, нагруженной равномерно распределенной нагрузкой

Кинетическая энергия стержня в момент касания о жесткие опоры

Определим интенсивность инерционной равномерно распределенной нагрузки , из условия , или .

.

Тогда максимальный изгибающий момент

Определяем максимальное динамическое напряжение в падающем стержне

Механические свойства материалов при ударе

Для проверки способности материала сопротивляться ударным нагрузкам проводят испытания ударным изгибом – определение ударной вязкости надрезанных образцов. Эти испытания проводят на маятниковых копрах (, а). На рис. 2.11.4, б показан применяемый при испытании образец. Разность высот маятника до и после удара позволяет вычислить работу , израсходованную на разрушение образца.

Ударной вязкостью материала называется величина раоты разрушения образца, отнесенная к площади поперечного сечения в месте надреза:

(2.11.18)

Рис.2.11.

Данные об ударной вязкости не могут быть использованы при расчете на прочность, но они позволяют оценить особое качество металла – его склонность к хрупкости при динамических нагрузках. Низкая ударная вязкость служит основанием для браковки материала. Стали, применяемые для изготовления деталей, работающих при динамических нагрузках, должны иметь ударную вязкость не менее  -  Дж/м2.


 

А также другие работы, которые могут Вас заинтересовать

32535. Этапы проектирования и разработки ЭС 41 KB
  Поскольку ППС программа то к процессу его разработки можно применить те технологические принципы которые используются при создании программных систем с учетом специфики будущего применения такого рода программ. Исходным пунктом при создании ППС является определение цели обучения. Очень ответственным с точки зрения разработки ППС является уровень детализации учебных вопросов на котором производится содержательный анализ вопросов выбор способа достижения учебных целей и принимается решение об автоматизации той или иной части учебной...
32536. ОБЩИЕ ПРИНЦИПЫ РАЗРАБОТКИ ПРОГРАММНЫХ СРЕДСТВ 106.5 KB
  Разработка и использование ЭС образовательного назначения ОБЩИЕ ПРИНЦИПЫ РАЗРАБОТКИ ЭС. ОБЩИЕ ПРИНЦИПЫ РАЗРАБОТКИ ПРОГРАММНЫХ СРЕДСТВ Специфика разработки программных средств. Разработка программных средств имеет ряд специфических особенностей Прежде всего следует отметить некоторое противостояние: неформальный характер требований к ПС постановки задачи и понятия ошибки в нем но формализованный основной объект разработки  программы ПС. Этот творческий характер разработки ПС сохраняется до самого ее конца.
32537. ДИАЛОГ УЧАЩИХСЯ С ЭВМ. ОБЩЕПСИХОЛОГИЧЕСКИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ДИАЛОГА. ОРГАНИЗАЦИЯ ПРОЦЕССА ОБЩЕНИЯ 74.5 KB
  Разработка и использование ЭС образовательного назначения ДИАЛОГ УЧАЩИХСЯ С ЭВМ. Система должна оказывать поддержку попыткам обучаемых научиться общению с системой и не вызывать раздражения у учащихся принуждая их вести диалог если они этого не хотят. Широкое использование фактического диалога может отрицательно сказаться на отношении учащихся к. Не допускайте отрицательных оценок мышления памяти внимания учащихся.
32538. РАЗРАБОТКА ПОЛЬЗОВАТЕЛЬСКОГО ИНТЕРФЕЙСА 129.5 KB
  Окна подразделяются на первичные и вторичные. Прочие порождаемые им окна относятся ко вторичным которые в свою очередь могут быть дочерними и всплывающими. Внережимные и дочерние окна служат для организации параллельных ветвей диалога. Пользователь может выбирать активное окно переключаясь между дочерними и внережимными или первичным и внережимными окнами если дочерние окна отсутствуют.
32539. ВЫБОР ФОРМ ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ 470 KB
  ВЫБОР ФОРМ ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ В ЭС применяются разнообразные формы представления информации: текст и гипертекст графика и гиперграфика видео анимация звук интерактивные трехмерные изображения. По способу формирования изображения они подразделяются на матричные растровые векторные и функциональные. Пиксель является минимальным адресуемым элементом матричного изображения. При любом увеличении качество векторного изображения не меняется.
32540. ОПРЕДЕЛЕНИЕ ТИПОВ УЧЕБНО-ТРЕНИРОВОЧНЫХ ЗАДАЧ 398 KB
  Типизация учебнотренировочных задач Напомним что основным средством контроля знаний в ЭС служат УТЗ результаты и ход выполнения которых оцениваются автоматически. Целесообразно чтобы программа включала в себя единое множество УТЗ из которого выбирались задачи используемые в том или ином контрольном блоке в зависимости от представления в нем содержания курса и требований к знаниям обучаемых. Необходимо чтобы уровень тематического деления множества УТЗ соответствовал минимальному охвату учебного материала блоком контроля. Таким образом...
32541. РАЗРАБОТКА СИСТЕМЫ КОНТРОЛЯ ЗНАНИЙ 130 KB
  Основная функция обратной связи идущей от учащегося к обучаемому раскрыть как осуществляется учебная деятельность с тем чтобы наметить систему обучающих воздействий которые обеспечивают эффективное достижение учебных целей. Информация которая идет по каналу обратной связи от обучаемого к обучающему содержит сведения о том как учащийся решает предложенные ему учебные задачи какие трудности испытывает их причины а также какие вспомогательные обучающие воздействия обеспечивают правильное решение учебных задач. В настоящее время...
32542. КАЧЕСТВО ПРОГРАММНОГО СРЕДСТВА 68.5 KB
  Понятие качества программного средства. Этому препятствует тот факт что повышение качества ЭС по одному из таких свойств часто может быть достигнуто лишь ценой изменения стоимости сроков завершения разработки и снижения качества этого ЭС по другим его свойствам. Поэтому при описании качества ЭС прежде всего должны быть фиксированы критерии отбора требуемых свойств ЭС. В настоящее время критериями качества программных средств criteri of softwre qulity принято считать: Функциональность  это способность ЭС выполнять набор...
32543. ОЦЕНКА УЧЕБНЫХ ПРОГРАММ 79.5 KB
  При оценивании следует помнить что не всякая оценка в равной мере применима ко всем программам необходимо учитывать тему цель и тип программы. Один из пунктов предназначен для краткого описания программы причем не столько ее содержания сколько других факторов которые могут вызвать интерес учителя предмет ступень обучения класс необходимое аппаратное обеспечение количество программ цена и т. Прогон программы запуск ввод данных управление. гарантируется ли работа при неправильном нажатии клавиш Точно ли указывается опасность...