11141

Динамическое нагружение

Реферат

Математика и математический анализ

Динамическое нагружение. Понятие о динамическом действии нагрузки. Ранее во всех рассмотренных нами задачах предполагалось что действующие нагрузки статические т. е. не изменяющиеся стечением времени. При проектировании машин обычно сталкиваются с деталями находя

Русский

2013-04-05

485.5 KB

83 чел.

Динамическое нагружение.


Понятие о динамическом действии нагрузки.

Ранее во всех рассмотренных нами задачах предполагалось, что действующие нагрузки статические, т. е. не изменяющиеся стечением времени. При проектировании машин обычно сталкиваются с деталями, находящимися в неравномерном движении, что приводит к появлению инерционных нагрузок.

Примером статической нагрузки или статического действия нагрузки может послужить действие подвешенного на цепи груза. Это действие остается статическим, если груз будет подниматься цепью с постоянной скоростью. Но тот же груз, поднимаемый цепью с ускорением, будет действовать на цепь динамически. Для расчета цепи в данном случае мы должны учесть не только вес груза, но и силу инерции груза.

Для примера рассмотрим расчет равномерно вращающегося тонкого кольца (рис. 2.11.1, a)

Рис.2.11.

Для расчета примем следующие обозначения:

- средний радиус кольца;

- площадь поперечного сечения;

- удельный вес материала;

- угловая скорость кольца;

- ускорение силы тяжести.

Рассмотрим бесконечно малый элемент кольца массой , вырезанный двумя плоскостями, составляющими центральный угол  (рис. 2.11.1, б)

Элементарная сила инерции

(2.11.1)

Элементарная масса, выраженная через площадь сечения кольца

(2.11.2)

Элементарная сила инерции с учетом (2.11.02) будет равна

(2.11.3)

Для определения  продольной силы  в поперечном сечении кольца рассмотрим равновесие половины кольца под действием двух продольных сил  и суммы вертикальных составляющих элементарных сил инерций:

откуда

(2.11.4)

Полагая, что в тонком кольце все волокна растягиваются одинаково, найдем напряжение в сечении кольца

(2.11.5)

Определим теперь, на сколько удлинится радиус вращающегося кольца. Относительное удлинение волокон кольца равны:

Из закона Гука

Откуда

(2.11.6)

Удар

К динамическому  виду нагрузки относится так же ударная нагрузка. С явлением удара приходиться иметь дело, когда скорость рассматриваемого элемента конструкции или соприкасающихся с ним частей в очень короткий промежуток времени изменяется на конечную величину. Определение силы удара весьма затруднительно, так как неизвестно время соударения, поэтому в инженерной практике обычно пользуются энергетическим методом. В качестве примера рассмотрим систему с одной степенью свободы (, а), которая представляет собой пружину с коэффициентом жесткости  и падающий на нее груз массой  с высоты

Рис.2.11.

Груз  при касании пружины будет обладать кинетической энергией , которую можно выразить через скорость  груза в момент касания или высоту :

(2.11.7)

После того, как груз коснется пружины, он начет деформировать пружину. Кода вся кинетическая энергия груза перейдет в потенциальную энергию сжатой пружины, груз остановится (, б), пружина получит свою наибольшую динамическую деформацию , а сила, сжимающая пружину, достигнет максимума. При составлении энергетического баланса здесь нужно учитывать изменение потенциальной энергии  груза на динамической деформации :

. (2.11.8)

Упругая энергия  сжатой пружины

(2.11.9)

Составим энергетический баланс

или

,

который перепишем в следующем виде

(2.11.10)

Рассматривая статическое равновесие упругой системы (, в), отношение силы тяжести груза к жесткости пружины равно статической деформации пружины :

Получили квадратное уравнение, из которого динамическая деформация определится как

(2.11.11)

Поскольку знак минус в этом выражении не соответствует физической стороне рассматриваемой задачи, следует сохранить знак плюс. Запишем выражение (2.11.11) в виде

(2.11.12)

Величину, стоящую в скобках называют коэффициентом динамичности

(2.11.13)

Коэффициент динамичности, выраженный через скорость груза в момент касания пружины с учетом выражения (2.11.7) будет равен

(2.11.14)

Окончательно динамическая деформация пружины определится как

(2.11.15)

Динамический коэффициент показывает, во сколько раз деформация при ударе больше деформации при статическом приложении нагрузки. В том же отношении изменяются внутренние силы и напряжения:

(2.11.16)

Из анализа выражения (2.11.14) видно, что коэффициент динамичности зависит от кинетической энергии падающего груза. В случае, если груз опускается на упругую систему мгновенно без начальной скорости, динамическая деформация уже вдвое превышает статическую. Соответственно в два раза большими оказываются и напряжения.

Коэффициент динамичности, а, следовательно, и динамические напряжения, также зависят от жестокости упругой системы. При большей жесткости статические деформации имеют меньшие значения, а динамические напряжения при этом увеличиваются. Поэтому снижение напряжений при ударе может быть достигнуто уменьшением жесткости системы.

Зависимости для определения динамических напряжений и деформаций, полученные на примере падения груза на пружину применимы и для других упругих систем (расчет на удар при растяжении – сжатии, кручении и изгибе).

В каждом случае придерживаются следующего порядка расчета:

а) в месте падения груза к упругой системе прикладывают статическую нагрузку, равную весу падающего груза;

б) определяют статическую деформацию упругой системы;

в) определяют напряжения в материале, возникающие от приложения статической нагрузки;

г) определяют коэффициент динамичности;

д) определяют динамические напряжения и деформации.

е) сравнивают напряжения при ударе с допускаемыми напряжениями:

(2.11.17)

Обычно коэффициент запаса  принимают равным .

Полученные выше выражения получены без учета массы упругой системы, к которой прикладывается ударная нагрузка. Учет массы дает меньшие значения динамических напряжений, поэтому, рассчитывая конструкции без учета ее массы, мы получаем дополнительный запас прочности.

В некоторых случаях динамические напряжения не могут быть определены через коэффициент динамичности. Для примера рассмотрим стальной стержень, который падает с высоты  таким образом, что, оставаясь горизонтальным, он ударяется о жесткие опоры. Длина стержня , диаметр , удельный вес материала .

Рис.2.11.

Полагаем, что вся кинетическая энергия , запасенная падающим стержнем до достижения им опор, полностью перейдет в энергию деформации  стержня.

Потенциальная энергия деформации

Изгибающий момент в произвольном сечении балки, нагруженной равномерно распределенной нагрузкой

Кинетическая энергия стержня в момент касания о жесткие опоры

Определим интенсивность инерционной равномерно распределенной нагрузки , из условия , или .

.

Тогда максимальный изгибающий момент

Определяем максимальное динамическое напряжение в падающем стержне

Механические свойства материалов при ударе

Для проверки способности материала сопротивляться ударным нагрузкам проводят испытания ударным изгибом – определение ударной вязкости надрезанных образцов. Эти испытания проводят на маятниковых копрах (, а). На рис. 2.11.4, б показан применяемый при испытании образец. Разность высот маятника до и после удара позволяет вычислить работу , израсходованную на разрушение образца.

Ударной вязкостью материала называется величина раоты разрушения образца, отнесенная к площади поперечного сечения в месте надреза:

(2.11.18)

Рис.2.11.

Данные об ударной вязкости не могут быть использованы при расчете на прочность, но они позволяют оценить особое качество металла – его склонность к хрупкости при динамических нагрузках. Низкая ударная вязкость служит основанием для браковки материала. Стали, применяемые для изготовления деталей, работающих при динамических нагрузках, должны иметь ударную вязкость не менее  -  Дж/м2.


 

А также другие работы, которые могут Вас заинтересовать

2599. Психологическая характеристика подросткового возраста 210.9 KB
  Психологическая характеристика подросткового возраста. Особенности межличностных отношений в подростковом возрасте Подростковый возраст 10-16 лет. Четких границ нет (13-16 мальчики и 12-15 девочки). Относится к числу переходных и критических периодо...
2600. Моя професія - бухгалтер. Професійна орієнтація 190 KB
  Професійна орієнтація — система організації та проведення навчально-виховної роботи, спрямованої на засвоєння студентами необхідних знань про соціально-економічні і психофізіологічні умови правильного вибору професії, формування у них уміння аналізувати вимоги професії до психологічної структури особистості
2601. День Соборності України – день єднання народу 42.08 KB
  Психолого-педагогічне обґрунтування обрання теми та форми виховного заходу. Було обрано тему День Соборності України – день єднання народу у формі класної години. Необхідність проведення заходу виникла  у зв’язку зі святом 22 січня...
2602. Внеклассное мероприятие по теме Весна пришла 88.61 KB
  Форма проведения: соревнование двух команд Цели: развитие памяти, внимания, наблюдательности, смекалки, активизация мыслительной деятельности, формирование у учащихся навыков самостоятельной работы; воспитание духа соревнования, честности, целе...
2603. Защитники Родины 28.24 KB
  Тема: Защитники Родины. Форма проведения: игра-соревнование; Цель: расширить представление детей об общенародном празднике, посвященном вооруженным Силам России, воспитывать у них любовь к защитникам Отечества и к своей Родине, создать атмосферу п...
2604. Масленица. Воспитательное мероприятие 29.91 KB
  Цели: Познакомить учащихся с русскими традициями масленичной недели. Задачи: -  Воспитывать уважение и интерес к культурному наследию нашей страны.- Формировать у учащихся чувства коллективизма и взаимопомощи, дисциплинированности. Материалы и ...
2605. Основы денежно-кредитного регулирования экономики 280 KB
  ТЕМА 1. Основы денежно-кредитного регулирования экономики Введение в курс Денежно-кредитное регулирование экономики. Денежный оборот и его структура Основные потоки денег в экономике Инфляция как социально-экономический процесс: понятие, причины...
2606. Изучение маятника максвелла 52.11 KB
  Изучение маятника максвелла Цель работы: определение основных характеристик маятника Максвелла. Приборы и принадлежности: установка FPM-03, набор колец, штангенциркуль. Краткие теоретические сведения Движение твёрдого тела можно рассматривать как дв...
2607. Изучение движения маятника максвелла 119.5 KB
  Цель работы: ознакомление со сложным движением твердого тела на примере маятника Максвелла: экспериментальное определение момента инерции тел вращения. МЕТОДИКА ЭКСПЕРИМЕНТА Маятник Максвелла представляет собой однородный металлический диск, в серед...