11143

Тонкостенные осесимметричные оболочки и толстостенные цилиндры

Реферат

Математика и математический анализ

Тонкостенные осесимметричные оболочки и толстостенные цилиндры. Тонкостенные осесимметричные оболочки Тонкостенной осесимметричной называется оболочка имеющая форму тела вращения т. е. оболочка полярно симметричная относительно некоторой оси толщина которой в

Русский

2013-04-05

487.5 KB

56 чел.

Тонкостенные осесимметричные оболочки и толстостенные цилиндры.


Тонкостенные осесимметричные оболочки

Тонкостенной осесимметричной называется оболочка, имеющая форму тела вращения (т. е. оболочка, полярно симметричная относительно некоторой оси), толщина которой весьма мала по сравнению с радиусами кривизны  ее поверхности.

На рис. 2.13.1,а изображена срединная поверхность осесимметричной оболочки. Выделим из нее бесконечно малый элемент двумя меридиональными плоскостями тт1т2 и тт3т2 (т. е. плоскостями, проходящими через ось симметрии оболочки) с углом dφ между ними и двумя плоскостями, перпендикулярными оси симметрии оболочки, одна из которых пересекает срединную поверхность оболочки по линии ВС, а другая — по линии AD.

Рис. 2. 13.

Радиусы 02А и 02В кривизны срединной поверхности элемента ABCD в меридиональной плоскости обозначим рm, а радиусы 01В и О1С ее кривизны в плоскости, перпендикулярной меридиану,— ρθ (рис.2.13, б).

Расчеты тонкостенных осесимметричных оболочек выполняют при проектировании различных резервуаров, газгольдеров, котлов и т. д. Нагрузки, действующие на внутреннюю поверхность такой оболочки, перпендикулярны этой поверхности и симметричны относительно  оси  симметрии  оболочки.

Если оболочка достаточно тонкая, при расчете можно пренебречь изгибом поверхности оболочки и считать, что напряжения по толщине стенки оболочки распределены равномерно. Такой расчет называется расчетом по безмоментной теории.

Если оболочка недостаточно тонкая, имеет резкие переломы в очертании, жесткие закрепления и нагружена сосредоточенными силами или моментами, то в зонах, прилегающих к местам переломов, закреплений, приложения нагрузки, а также у краев оболочки возникает изгиб. Однако по мере удаления от этих мест изгибающие моменты быстро затухают; поэтому расчет удаленных зон таких оболочек может производиться по безмоментной теории.

Рис. 2. 13.

Элемент ABCD оболочки в ортогональных проекциях показан на рис. 2.13.2, а. По боковым граням элемента АВ и CD, совпадающим с меридиональными плоскостями, в силу симметрии оболочки и нагрузки касательные напряжения равны нулю; по этим граням действуют лишь нормальные напряжения σθ (окружные  напряжения).

Из закона парности касательных напряжений следует, что касательные напряжения по боковым граням ВС и AD также равны нулю; по этим граням действуют лишь нормальные напряжения σm (меридиональные напряжения). Кроме напряжений σθ и σm на элемент оболочки действует нагрузка в виде давления р, перпендикулярного поверхности ABCD.

Составим условие равновесия бесконечно малого элемента оболочки в виде суммы проекций приложенных к нему сил на ось v, совпадающую с нормалью к поверхности ABCD:

где δ — толщина элемента ABCD оболочки.

В этом уравнении величина  представляет собой силу, действующую на каждую из боковых граней АВ и CD элемента оболочки, a  —на каждую из боковых граней ВС и AD (рис. 2.13.2, б). Величина  равна проекции обеих сил , а  — проекции сил  на ось v. Углы d1, и d2/2 показаны на рис. 2.13.1,б и 2.13.2, а. Произведение представляет собой проекцию нагрузки, приложенной к элементу A BCD на ось v.

Вследствие малости углов d1, и d2/2 их синусы равны значениям углов, а потому

 и 

Подставив эти значения синусов в выражение (а), после сокращения на dsl, ds2 получим

(2.13.1)

Формула (2.13.1) носит название уравнения Лапласа. Она используется для определения напряжений в стенке тонкостенной оболочки. Конечно, определить из одного уравнения две неизвестные величины и  невозможно; поэтому определить напряжения в стенке оболочки можно лишь на основе совместного решения уравнения Лапласа и уравнения равновесия части оболочки, отсеченной конической поверхностью, перпендикулярной меридианам. Исключением является сферическая (шаровая) оболочка, находящаяся  под действием газового давления; для нее

где D — диаметр сферы и  вследствие центральной симметрии оболочки и действующей на нее нагрузки, а потому из уравнения (2.13.1)

(2.13.2)

Для оболочки, имеющей форму цилиндра или конуса, из уравнения Лапласа можно определить , даже если  еще неизвестно. Это следует из того, что в указанных случаях  (меридиан оболочки представляет собой прямую линию) и, значит, , поэтому

В случае газового давления величина р постоянна во всех точках поверхности оболочки; для резервуаров, наполненных жидкостью, значение р по их высоте переменно.

Расчет толстостенных цилиндров

Толстостенным называется такой цилиндр, для которого отношение толщины стенки к внутреннему диаметру не менее 1/20; при меньшем отношении цилиндр можно рассчитывать как тонкостенную оболочку.

Рассмотрим задачу о расчете толстостенного цилиндра, подвергающегося действию равномерно распределенных наружного давления рн и внутреннего давления рв (рис. 2.13.3, а). Такая нагрузка не может вызывать деформации изгиба цилиндра.

При расчете толстостенных цилиндров нормальные напряжения  в сечениях плоскостями, проходящими через ось О симметрии (рис. 13.3, а), нельзя считать равномерно распределенными по толщине стенки, как это делается при расчете тонкостенных цилиндров. Нормальные напряжения , действующие по цилиндрической поверхности с радиусом  (рис. 2.13.3, а) могут быть того же порядка и даже превышать напряжения , что при тонкостенных цилиндрах невозможно. Поэтому расчет толстостенных цилиндров нельзя производить по формуле (2.13.1), применяемой при расчете тонкостенных осесимметричных оболочек.

Рис. 2. 13.

В связи с полярной симметрией цилиндра и нагрузки нормальные напряжения  и  являются главными напряжениями; в площадках, по которым они действуют, касательные напряжения равны нулю.

Третьим главным напряжением в каждой точке толстосенного цилиндра является напряжение , действующее по площадке, совпадающей с поперечным сечением цилиндра, т. е. с сечением плоскостью, перпендикулярной его оси симметрии.

При выводе расчетных формул рассмотрим открытые цилиндры, т. е. цилиндры, не имеющие днищ. Напряжения  в таких цилиндрах равны нулю.

Точное решение, выполненное методами теории упругости, показывает, что поперечные сечения цилиндра, плоские до его нагружения, остаются плоскими и после нагружения и что, следовательно, относительная деформация  в направлении оси симметрии одинакова во всех точках поперечного сечения. На основании закона Гука при

при  

откуда

(2.13.3)

Из полученного выражения следует, что сумма напряжений

и  одинакова для всех точек цилиндра.

На рисунке 2.13.3, б изображен элемент, выделенный из толстостенного цилиндра двумя цилиндрическими поверхностями радиусами  и , двумя плоскостями, проходящими через ось симметрии цилиндра и образующими друг с другом угол , и двумя поперечными сечениями, отстающими друг от друга на расстоянии, равном единице. Все грани элемента совпадают с главными площадками.

Составим уравнение равновесия в виде суммы проекций действующих на элемент сил на нормаль к цилиндрическим поверхностям, проведенную через их центры:

Сокращая это выражение на  и отбрасывая величины второго порядка, находим

Заменим в этом уравнении  на

или, учитывая, что

,

получаем

Проинтегрировав последнее уравнение, найдем

, (2.13.4)

где С – постоянная интегрирования.

постоянные А и С определим из граничных уловий на поверхности цилиндра:

а) на внутренней поверхности цилиндра: ,  и следовательно,

; (2.13.5)

б) на наружной поверхности цилиндра: ,  и, следовательно,

(2.13.6)

Решив совместно уравнения (2.13.5) и (2.13.6), найдем

;

Подставляя константы в уравнение (2.13.4). После преобразований

(2.13.7)

Из уравнения 2.13.3

(2.13.8)

Равенства (2.13.7) и (2.13.8) носят название формул Ламе. В этих формулах расстояние  от точки до оси цилиндра учитывается отношениями  и

Из формул (2.13.7) и (2.13.8) следует, что при действии только внутреннего давления напряжения  в любых точках цилиндра положительны и по абсолютной величине больше напряжений . Наибольшего значения напряжения  достигают у точек внутренней поверхности цилиндра.

Эпюры напряжений от действия только наружного и только внутреннего давления показаны на рис. 2.13.4

Рис. 2. 13.

Наибольшее значение напряжения  можно уменьшить путем применения составных толстостенных цилиндров, состоящих из нескольких более тонких труб, надетых друг на друга (рис. 2.13.5).

Рис. 2. 13.

Вторая труба изготовляется с внутренним диаметром, несколько меньшим наружного диаметра первой трубы. а третья – с внутренним диаметром, меньшим наружного диаметра второй трубы, и т. д.

Перед надеванием второй трубы на первую, ее нагревают настолько, чтобы внутренний диаметр, увеличившись от нагрева, стал несколько больше наружного диаметра первой трубы. В процессе остывания вторая труба сжимает первую. Аналогично на вторую трубу надевают третью и т. д.

Способ уменьшения напряжений путем замены сплошного цилиндра составным предложен в середине 19 века академиком А. В. Гадолиным, который дал и метод расчета составных цилиндров.


 

А также другие работы, которые могут Вас заинтересовать

20012. Вступ в економічну інформатику 78 KB
  Термін «інформація» визначає відомості, повідомлення або знання про реально існуючі процеси і об’єкти, а також про їх зв’язки та взаємодію, що доступні для практичного використання людиною.
20013. Технологии работы с текстовыми документами. Текстовые редакторы и процессоры: назначение и возможности 35.5 KB
  Более совершенные текстовые редакторы имеющие целый спектр возможностей по созданию документов например поиск и замена символов средства проверки орфографии вставка таблиц и др. Основные элементы текстового документа Текст документа текстового редактора содержит следующие элементы: символ минимальная единица текстовой информации; слово любая последовательность символов ограниченная с обоих концов служебными символами.; предложение любая последовательность символов между двумя точками; строка любая последовательность символов...
20014. Технологии работы с графической информацией. Растровая и векторная графика. Аппаратные средства ввода и вывода графических изображений 96.5 KB
  Создавать и хранить графические объекты в компьютере можно в виде – Растрового изображения Векторного изображения Растровые изображения Растровые изображения очень хорошо передают реальные образы. Такие изображения легко выводить на монитор или принтер поскольку эти устройства тоже основаны на растровом принципе. Одной из главных проблем растровых файлов является масштабирование: при существенном увеличении изображения появляется зернистость ступенчатость картинка может превратиться в набор неряшливых квадратов увеличенных пикселей ....
20015. Табличные базы данных (БД): основные понятия (поле, запись, первичный ключ записи); типы данных 42 KB
  Табличные базы данных БД: основные понятия поле запись первичный ключ записи; типы данных. Системы управления базами данных и принципы работы с ними. Поиск удаление и сортировка данных в БД. Любой из нас начиная с раннего детства многократно сталкивался с базами данных .
20016. Технология обработки информации в электронных таблицах (ЭТ). Структура электронной таблицы. Типы данных: числа, формулы, текст 38 KB
  Типы данных: числа формулы текст. Графическое представление данных. Электронные таблицы Электронная таблица это программа обработки числовых данных хранящая и обрабатывающая данные в прямоугольных таблицах. Можно вводить и изменять данные одновременно на нескольких рабочих листах а также выполнять вычисления на основе данных из нескольких листов.
20017. Интернет. Информационные ресурсы и сервисы компьютерных сетей: Всемирная паутина, файловые архивы, интерактивное общение. Назначение и возможности электронной почты. Поиск информации в Интернете 72 KB
  Адресация в Интернет Для того чтобы связаться с некоторым компьютером в сети Интернет Вам надо знать его уникальный Интернет адрес. Существуют два равноценных формата адресов которые различаются лишь по своей форме: IP адрес и DNS адрес. IP адрес IP адрес состоит из четырех блоков цифр разделенных точками. Благодаря такой организации можно получить свыше четырех миллиардов возможных адресов.
20018. Виды информационных моделей (на примерах). Реализация информационных моделей на компьютере. Пример применения электронной таблицы в качестве инструмента математического моделирования 55.5 KB
  Понятие модели. Пример применения электронной таблицы в качестве инструмента математического моделирования. Моделирование Человечество в своей деятельности научной образовательной постоянно созадет и использует модели окружающего мира. Строгие правила построения моделей сформулировать невозможно однако человечество накопило богатый опыт моделирования различных объектов и процессов.
20019. Язык как способ представления информации: естественные и формальные языки. Основные информационные процессы: хранение, передача и обработка информации 48 KB
  Понятие информации. Виды информации. Роль информации в живой природе и в жизни людей. Язык как способ представления информации: естественные и формальные языки.
20020. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации 39 KB
  Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации. Определить понятие количество информации довольно сложно. один из основоположников кибирнетиеи американский математик Клож Шенон развил вероятностный подход к измерению количества информации а работы по созданию ЭВМ привели к объемному подходу .