11276

Изучение динамики вращательного движения с помощью маятника максвелла

Лабораторная работа

Физика

Изучение динамики вращательного движения с помощью маятника максвелла Указания содержат краткое описание рабочей установки и методики определения момента инерции с помощью маятника Максвелла. Методические указания предназначены для студентов инженерных спе...

Русский

2013-04-05

231 KB

60 чел.

Изучение динамики вращательного движения с помощью маятника максвелла

Указания содержат краткое описание рабочей установки и методики определения момента инерции с помощью маятника Максвелла.

Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Механика и молекулярная физика»).

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Научный редактор проф., д.т.н. В.С. Кунаков

© Издательский центр ДГТУ, 2008


Лабораторная работа  №21

ИЗУЧЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

Цель работы:  Определение момента инерции маятника Максвелла с учётом и без учёта силы трения, и сравнение его с теоретическим расчётом. Вычисление силы трения.

  Оборудование: экспериментальная установка.

  1.  Теоретическая часть.

Если маятник массы опускается с высоты , а поднимается на высоту , то можно сказать, что часть его потенциальной энергии расходуется на работу против сил трения, т.е.

.  (1)

Из этого уравнения получаем выражение для вычисления силы трения:

.   (2)

С другой стороны, потенциальная энергия маятника в верхней точке () превращается в нижней точке в кинетическую энергию поступательного движения (), вращательного движения () и в работу против сил трения (), т.е.

. (3)

Решаем совместно уравнения (1), (2), (3), учитывая, что  и , где - линейная скорость движения маятника,  - его угловая скорость вращения,  - радиус оси, на которую наматывается нить,  - время движения маятника до нижней точки.

 Получаем выражение для момента инерции маятника Максвелла с учётом силы трения:

.  (4)

Если рассмотреть идеальный вариант, т.е., когда , то , и мы получаем выражение для момента инерции маятника Максвелла без учёта силы трения:

.  (5)

  1.  Описание экспериментальной установки

На вертикальной стойке основания 1 (рис. 1) крепятся два кронштейна: верхний 2 и нижний 3. Верхний кронштейн снабжён электромагнитами и устройством 4 для крепления и регулировки бифилярного подвеса 5.

Маятник представляет собой диск 6, закреплённый на оси 7, подвешенной на бифилярном подвесе. На диск крепятся сменные кольца 8. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита. На вертикальной стойке 1 нанесена миллиметровая шкала, по которой определяется высота перемещения маятника. Фотоэлектрический датчик 9 закреплён с помощью кронштейна 3 в нижней части вертикальной стойки. Кронштейн 3 обеспечивает возможность перемещения фотодатчика вдоль вертикальной стойки и его фиксирования в любом положении в пределах шкалы (0 – 42 см). Фотодатчик 9 предназначен для передачи электросигналов на миллисекундомер 10, который выполнен самостоятельным прибором с цифровой индикацией времени и жёстко закреплён на основании 1.

  1.  Порядок выполнения лабораторной работы:

ЗАДАНИЕ 1.  Определение моментов инерции маятника Максвелла с учётом и без учёта силы трения. Определение силы трения.

  1.  Занести в таблицу 1 все известные величины и их абсолютные погрешности, указанные на установке, учитывая, что масса маятника , где - масса оси, - масса диска, - масса кольца.
  2.  Установить нижний кронштейн 3 с фотодатчиком 9 (рис. 1) на высоте , указанной преподавателем. Занести в таблицу 1.
  3.  Установить с помощью устройства 4 необходимую длину бифилярного подвеса таким образом, чтобы нижний край среза кольца маятника находился на 5 мм ниже оптической оси фотодатчика 9, а ось маятника занимала горизонтальное положение.
  4.  Включить в сеть шнур питания миллисекундомера.
  5.  Нажать на кнопку «сеть», расположенную на лицевой панели миллисекундомера, при этом должна загореться лампочка фотодатчика и цифровые индикаторы миллисекундомера.
  6.  Вращая маятник, зафиксировать его в верхнем положении при помощи электромагнита, при этом надо следить  за тем, чтобы нить наматывалась виток к витку.
  7.  Нажать кнопку «сброс» и убедиться, что на индикаторе устанавливаются нули.
  8.  При нажатии кнопки «пуск» на миллисекундомере электромагнит обесточивается, маятник раскручивается, миллисекундомер начинает отсчёт времени, а в момент пересечения маятником оптической оси фотодатчика отсчёт времени прекращается.
  9.  Произвести отсчёт времени хода маятника  по миллисекундомеру. Одновременно измерить высоту подъёма маятника . Повторить измерения 5 раз. Все значения  и  занести в таблицу 2.
  10.  Вычислить по формуле (2) силу трения (для среднего значения ).
  11.  Вычислить по формуле (4) момент инерции маятника  с учётом силы трения (для средних значений времени  и ).
  12.   Вычислить по формуле (5) момент инерции маятника без учёта силы трения (для средних значений времени  и ).
  13.  Результаты вычислений по формулам (2), (4) и (5) занести в таблицу 3.
  14.  Произвести статистическую обработку результатов измерения времени  и заполнить таблицу 2.
  15.  Вычислить относительные и абсолютные погрешности  по формулам (6) – (11) и занести в таблицу 3:

, (6)

;  (7)

,  (8)

  (9)

,   (10)

.    (11)

Таблица 1

Таблица 2

п/п

с

с

с2

с

-

с

с

с

1

2

3

4

5

Ср.

Таблица 3

ЗАДАНИЕ 2. Теоретический расчёт момента инерции маятника Максвелла.

1. Момент инерции маятника Максвелла  равен сумме моментов инерции оси , диска  и кольца :

=++,

где ,  ,  .

Результат занести в таблицу 3.

2. Сравнить теоретическое и экспериментальные значения момента инерции и объяснить результат.

Контрольные вопросы

  1.  Что называется моментом инерции материальной точки?
  2.  Что называется моментом инерции твёрдого тела? От чего он    зависит?
  3.  Момент инерции тел простейшей формы относительно оси, проходящей через центр инерции.
  4.  Физический смысл момента инерции.
  5.  Вывести формулу для определения силы трения при движении маятника Максвелла.
  6.  Вывести формулу для определения момента инерции маятника Максвелла.
  7.  Записать основной закон динамики вращательного движения.
  8.  Теорема Штейнера.
  9.  Найти момент инерции однородного диска радиусом  относительно оси вращения, перпендикулярной плоскости диска и проходящей через его край.  
  10.  Чем обусловлена сила трения в данной работе?

Рекомендуемая литература

  1.  Савельев И.В. Курс общей физики (т.1). М.: Наука, СПб.: Лань, 2006.
  2.  Трофимова Т.И. Курс физики. М.: Высш. Шк., 2004.
  3.  Справочное руководство по физике. Ч.1. Механика, молекулярная физика, электричество, магнетизм: Учеб.-метод. пособие.-Ростов н/Д: Издательский центр ДГТУ, 2008.

Техника безопасности

  1.  К работе с установкой допускаются лица ознакомленные с её устройством и принципом действия.
  2.  Для предотвращения опрокидывания установки необходимо располагать её только на горизонтальной поверхности.

Составители: С.И. Егорова, И.Н. Егоров, Г.Ф. Лемешко, В.С. Кунаков

ИЗУЧЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

Методические указания к лабораторной работе №21 по физике

(Раздел «Механика»)

Редактор А.А.Литвинова

В печать

Объём 0,7 усл.п.л. Офсет. Формат 60х84/16.

Бумага тип №3. Заказ №       . Тираж          . Цена           

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344010, г.Ростов-на-Дону, пл.Гагарина,1.


1

7

5

6

8

9

10

2

4

Рис. 1


 

А также другие работы, которые могут Вас заинтересовать

78411. СБОРКА И УСТАНОВКА ТЯГОВЫХ ЭЛЕКТРИЧЕСКИХ МАШИН 107.66 KB
  Устанавливают на валу якоря внутренние обоймы роликоподшипников в подшипниковых щитах монтируют наружные обоймы подшипников вместе с роликами ставят и закрепляют на остове подшипниковый щит 27 см. Надев на вал якоря подшипниковый щит 13 и укрепив на валу подъемную скобу вставляют якорь вместе со щитом в остов см. Измеряют радиальное биение коллектора осевой разбег якоря в подшипниках проверяют длинными щупами зазоры между сердечниками якоря и полюсов. О правильности монтажа подшипниковых щитов в остове судят по отсутствию зазора между...
78412. Ремонт электроаппаратов 192.15 KB
  Подгар и оплавление контактов вызываются плохим прилеганием чрезмерным их износом и недостаточным нажатием неисправностью подвижной системы дугогасительных катушек и скоплением грязи на контактных поверхностях. Необходимым условием нормальной работы аппаратов является обеспечение надежных контактных соединений отсутствие пыли влаги и масла на деталях и содержание рабочих контактов в чистоте. Осматривают и проверяют состояние подвижных и неподвижных контактов гибких соединений дугогасительных камер и изоляции.
78413. ИСПЫТАНИЯ ТЕПЛОВОЗА ПОСЛЕ РЕМОНТА 43.28 KB
  Полные испытания выполняются при ТР3 и ТР2 а контрольные при ТР1 и в случае замены наиболее ответственных узлов дизеля или электрической передачи при внеплановом ремонте. Контрольные испытания проводят при необходимости проверки тепловых параметров дизеля настройки внешней характеристики генератора регулировки реле перехода. Перед пуском дизеля при открытых индикаторных кранах проворачивают вручную на несколько оборотов коленчатый вал проверяют соответствие рабочим положениям вентилей и кранов систем дизеля производят осмотр дизеля и...
78414. КЛАССИФИКАЦИЯ ЭЛЕКТРИЧЕСКИХ МАШИН 40.49 KB
  Электрические машины по назначению подразделяют на следующие виды. Электрические двигатели преобразуют электрическую энергию в механическую; они приводят во вращение различные машины механизмы и устройства применяемые в промышленности сельском хозяйстве связи на транспорте в военном деле и быту. Электрические машины небольшой мощности до 600 Вт называют микромашинами.
78416. Строение генератора, схема соединения обмоток 254.13 KB
  Продольный и поперечный разрезы тягового асинхронного генератора ГС501А Генератор ГС является синхронной электрической машиной защищенного исполнения с явно выраженными полюсами на роторе с независимым возбуждением с принудительной вентиляцией. Вращения генератора по часовой стрелке если смотреть со стороны контактных колец. К корпусу статора параллельно его оси с двух сторон приварены опорные лапы для установки генератора на поддизельные раму.
78417. Конструкция и принцип действия ТЭД 988.75 KB
  Две ступени возбуждения и гиперболическая зависимость напряжения от тока на зажимах тягового генератора обеспечивают изменение частоты вращения тягового электродвигателя в широком диапазоне. Работа тягового электродвигателя в диапазоне от максимально допустимого к длительному тока возможна кратковременно и есть пусковой зоной для локомотива. Остов выполняет роль магнитопровода как для главных так и дополнительных полюсов а также горловину для установки подшипниковых щитов моторноосевую часть и носики для крепления электродвигателя на...
78418. Строение вспомогательных электрических машин 324.26 KB
  Стартергенератор ПСГУ2 2ТЭ четырехполюсных электрическая машина постоянного тока которая предназначена для работы в двух режимах: стартерные как электродвигатель последовательно возбуждения с питанием от аккумуляторной батареи при пуске дизеля и в генераторном как вспомогательный генератор с независимым возбуждением осуществляет питание электрических цепей управления и электродвигателей постоянного тока собственных нужд освещение и заряда аккумуляторной батареи тепловоза при напряжении 110 3 В. Этим достигается увеличение маховой...