11276

Изучение динамики вращательного движения с помощью маятника максвелла

Лабораторная работа

Физика

Изучение динамики вращательного движения с помощью маятника максвелла Указания содержат краткое описание рабочей установки и методики определения момента инерции с помощью маятника Максвелла. Методические указания предназначены для студентов инженерных спе...

Русский

2013-04-05

231 KB

59 чел.

Изучение динамики вращательного движения с помощью маятника максвелла

Указания содержат краткое описание рабочей установки и методики определения момента инерции с помощью маятника Максвелла.

Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Механика и молекулярная физика»).

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Научный редактор проф., д.т.н. В.С. Кунаков

© Издательский центр ДГТУ, 2008


Лабораторная работа  №21

ИЗУЧЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

Цель работы:  Определение момента инерции маятника Максвелла с учётом и без учёта силы трения, и сравнение его с теоретическим расчётом. Вычисление силы трения.

  Оборудование: экспериментальная установка.

  1.  Теоретическая часть.

Если маятник массы опускается с высоты , а поднимается на высоту , то можно сказать, что часть его потенциальной энергии расходуется на работу против сил трения, т.е.

.  (1)

Из этого уравнения получаем выражение для вычисления силы трения:

.   (2)

С другой стороны, потенциальная энергия маятника в верхней точке () превращается в нижней точке в кинетическую энергию поступательного движения (), вращательного движения () и в работу против сил трения (), т.е.

. (3)

Решаем совместно уравнения (1), (2), (3), учитывая, что  и , где - линейная скорость движения маятника,  - его угловая скорость вращения,  - радиус оси, на которую наматывается нить,  - время движения маятника до нижней точки.

 Получаем выражение для момента инерции маятника Максвелла с учётом силы трения:

.  (4)

Если рассмотреть идеальный вариант, т.е., когда , то , и мы получаем выражение для момента инерции маятника Максвелла без учёта силы трения:

.  (5)

  1.  Описание экспериментальной установки

На вертикальной стойке основания 1 (рис. 1) крепятся два кронштейна: верхний 2 и нижний 3. Верхний кронштейн снабжён электромагнитами и устройством 4 для крепления и регулировки бифилярного подвеса 5.

Маятник представляет собой диск 6, закреплённый на оси 7, подвешенной на бифилярном подвесе. На диск крепятся сменные кольца 8. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита. На вертикальной стойке 1 нанесена миллиметровая шкала, по которой определяется высота перемещения маятника. Фотоэлектрический датчик 9 закреплён с помощью кронштейна 3 в нижней части вертикальной стойки. Кронштейн 3 обеспечивает возможность перемещения фотодатчика вдоль вертикальной стойки и его фиксирования в любом положении в пределах шкалы (0 – 42 см). Фотодатчик 9 предназначен для передачи электросигналов на миллисекундомер 10, который выполнен самостоятельным прибором с цифровой индикацией времени и жёстко закреплён на основании 1.

  1.  Порядок выполнения лабораторной работы:

ЗАДАНИЕ 1.  Определение моментов инерции маятника Максвелла с учётом и без учёта силы трения. Определение силы трения.

  1.  Занести в таблицу 1 все известные величины и их абсолютные погрешности, указанные на установке, учитывая, что масса маятника , где - масса оси, - масса диска, - масса кольца.
  2.  Установить нижний кронштейн 3 с фотодатчиком 9 (рис. 1) на высоте , указанной преподавателем. Занести в таблицу 1.
  3.  Установить с помощью устройства 4 необходимую длину бифилярного подвеса таким образом, чтобы нижний край среза кольца маятника находился на 5 мм ниже оптической оси фотодатчика 9, а ось маятника занимала горизонтальное положение.
  4.  Включить в сеть шнур питания миллисекундомера.
  5.  Нажать на кнопку «сеть», расположенную на лицевой панели миллисекундомера, при этом должна загореться лампочка фотодатчика и цифровые индикаторы миллисекундомера.
  6.  Вращая маятник, зафиксировать его в верхнем положении при помощи электромагнита, при этом надо следить  за тем, чтобы нить наматывалась виток к витку.
  7.  Нажать кнопку «сброс» и убедиться, что на индикаторе устанавливаются нули.
  8.  При нажатии кнопки «пуск» на миллисекундомере электромагнит обесточивается, маятник раскручивается, миллисекундомер начинает отсчёт времени, а в момент пересечения маятником оптической оси фотодатчика отсчёт времени прекращается.
  9.  Произвести отсчёт времени хода маятника  по миллисекундомеру. Одновременно измерить высоту подъёма маятника . Повторить измерения 5 раз. Все значения  и  занести в таблицу 2.
  10.  Вычислить по формуле (2) силу трения (для среднего значения ).
  11.  Вычислить по формуле (4) момент инерции маятника  с учётом силы трения (для средних значений времени  и ).
  12.   Вычислить по формуле (5) момент инерции маятника без учёта силы трения (для средних значений времени  и ).
  13.  Результаты вычислений по формулам (2), (4) и (5) занести в таблицу 3.
  14.  Произвести статистическую обработку результатов измерения времени  и заполнить таблицу 2.
  15.  Вычислить относительные и абсолютные погрешности  по формулам (6) – (11) и занести в таблицу 3:

, (6)

;  (7)

,  (8)

  (9)

,   (10)

.    (11)

Таблица 1

Таблица 2

п/п

с

с

с2

с

-

с

с

с

1

2

3

4

5

Ср.

Таблица 3

ЗАДАНИЕ 2. Теоретический расчёт момента инерции маятника Максвелла.

1. Момент инерции маятника Максвелла  равен сумме моментов инерции оси , диска  и кольца :

=++,

где ,  ,  .

Результат занести в таблицу 3.

2. Сравнить теоретическое и экспериментальные значения момента инерции и объяснить результат.

Контрольные вопросы

  1.  Что называется моментом инерции материальной точки?
  2.  Что называется моментом инерции твёрдого тела? От чего он    зависит?
  3.  Момент инерции тел простейшей формы относительно оси, проходящей через центр инерции.
  4.  Физический смысл момента инерции.
  5.  Вывести формулу для определения силы трения при движении маятника Максвелла.
  6.  Вывести формулу для определения момента инерции маятника Максвелла.
  7.  Записать основной закон динамики вращательного движения.
  8.  Теорема Штейнера.
  9.  Найти момент инерции однородного диска радиусом  относительно оси вращения, перпендикулярной плоскости диска и проходящей через его край.  
  10.  Чем обусловлена сила трения в данной работе?

Рекомендуемая литература

  1.  Савельев И.В. Курс общей физики (т.1). М.: Наука, СПб.: Лань, 2006.
  2.  Трофимова Т.И. Курс физики. М.: Высш. Шк., 2004.
  3.  Справочное руководство по физике. Ч.1. Механика, молекулярная физика, электричество, магнетизм: Учеб.-метод. пособие.-Ростов н/Д: Издательский центр ДГТУ, 2008.

Техника безопасности

  1.  К работе с установкой допускаются лица ознакомленные с её устройством и принципом действия.
  2.  Для предотвращения опрокидывания установки необходимо располагать её только на горизонтальной поверхности.

Составители: С.И. Егорова, И.Н. Егоров, Г.Ф. Лемешко, В.С. Кунаков

ИЗУЧЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

Методические указания к лабораторной работе №21 по физике

(Раздел «Механика»)

Редактор А.А.Литвинова

В печать

Объём 0,7 усл.п.л. Офсет. Формат 60х84/16.

Бумага тип №3. Заказ №       . Тираж          . Цена           

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344010, г.Ростов-на-Дону, пл.Гагарина,1.


1

7

5

6

8

9

10

2

4

Рис. 1


 

А также другие работы, которые могут Вас заинтересовать

26246. Применение сенсорной техники для дифференцированного внесения пестицидов 79 KB
  Сформировать умение применять методы дифференцированного внесения средств защиты растений в режимах offline и online с применением сенсорной техники. Использование гербицидов наиболее частое мероприятие по защите растений по сравнеию с использованием фунгицидов и инсектицидов. Для дифференцированного внесения средств защиты растений используют offline и online способы. Это делает возможным в любое время обращаться к этой информации чтобы получать заданные значения для защиты растений.
26247. Организация системы семеноводства 95.5 KB
  Контроль качества семян апробация посевов. Разработать технологии производства семян заданной культуры в системе внутрихозяйственного семеноводства. Система семеноводства сельскохозяйственных растений представляет собой совокупность функционально взаимосвязанных физических и юридических лиц осуществляющих деятельность по производству оригинальных элитных семян элиты и репродукционных семян. При этом развитая система семеноводства должна представлять собой высокоэффективный механизм не только обеспечивающий потребность в...
26248. Использование дистанционных методов и прецизионной техники для внесения удобрений 96 KB
  Лекция Использование дистанционных методов и прецизионной техники для внесения удобрений Цели и задачи. Сформировать умение разрабатывать электронные картограммы по обеспеченности элементами питания кислотности солонцеватости и картызадания для дифференциального внесения удобрений в режиме off line а также способность разрабатывать агротребования для выполнения операций в режиме on line. Рассматриваются различные режимы дифференцированного внесения удобрений и мелиорантов off line и on line программное обеспечение и использование...
26249. Техническое обеспечение агротехнологий 90 KB
  Рассматривается методика определения потребности агротехнологий в технике и оптимизации Машинотракторного парка на основе использования научно обоснованных нормативов. Ключевые слова: оптимизация МТП нормативы потребности эталонные единицы тракторооснащенность плуги бороны культиваторы лкщильники комбинированные агрегаты опрыскиватели. Одним из способов оптимизации состава МТП является методика основанная на использовании научно обоснованных нормативов потребности в технике. Нормативы потребности в базовых технических средствах в...
26250. Внесение удобрений 70.5 KB
  Домашнее задание Внесение удобрений Цель и задачи. Сформировать умение оперативно принимать решение по выбору оптимальных норм способов и сроков внесения удобрений в различных агротехнологиях в зависимости от изменяющихся агроэкологических и производственных условий. Рассматриваются нормы сроки и способы внесения удобрений в том числе микроудобрений в зависимости от агроэкологических и производственных условий. Сроки и способы внесения удобрений.
26251. Оценка устойчивости ландшафтов и агроландшафтов и их антропогенной преобразованности 71 KB
  13 Практическое задание Оценка устойчивости ландшафтов и агроландшафтов и их антропогенной преобразованности Цели и задачи. Сформировать представление об устойчивости природных ландшафтов и агроландшафтах видах экологической устойчивости определяющих ее факторах о цене экологической устойчивости агроландшафтов и принципах ее обеспечения. Затраты на ее поддержание определяют цену устойчивости агроландшафта. Дать характеристику экологической агрономической и экономической устойчивости определенного агроландшафта.
26252. Оценка экологической емкости агроландшафта 49 KB
  14 Домашнее задание Оценка экологической емкости агроландшафта Цели и задачи. Сформировать представление о способности агроландшафта воспринимать антропогенную нагрузку при сохранении экологической устойчивости и критериях ее оценки. Формируется понятие экологической емкости агроландшафта и определяющие ее условия. Дать оценку экологической емкости агроландшафта на примере конкретного земельного массива Оценка экологическая емкость агроландшафта Чтобы обеспечить экологическую устойчивость агроландшафта необходимо задать такие параметры...
26253. Значение и место альтернативных технологий в земледелии 47 KB
  Сформировать представление об агротехнологиях альтернативного земледелия как социальном явлении их формах причинах агрономических ограничений возможностях использования. Принципы и источники альтернативного земледелия его мотивации. Основателем данного направления считают австрийского философа Рудольфа Штайнера сформулировавшего в 1924 году принципы так называемого биодинамического земледелия как развитие созданного им мистического учения антропософии. В то же время продукция органического земледелия отнюдь не застрахована от природных...
26254. Агроэкологические требования сельскохозяйственных культур как исходный критерий агрооценки земель 38.5 KB
  Близкие по условиям возделывания конкретных сельскохозяйственных растений ЭАА объединяются в агроэкологические типы земель в пределах которых формируются производственные участки. Пока что не все аспекты агроэкологической оценки растений разработаны с достаточной полнотой особенно почвенные некоторые трудно поддаются формализации. Следует ускорить разработку региональных рекомендаций по данному вопросу с учетом местных условий культур сортов растений. Отношение растений к свету: размещение растений по реакции на продолжительность дня...