1129

Влияние углерода на твердость термически обработанных сталей

Лабораторная работа

Производство и промышленные технологии

Зависимость между содержанием углерода в стали и ее твердостью после отжига и закалки. Влияние углерода на структуру и свойства отожженных сталей. Количество остаточного аустенита при закалке сталей при увеличении содержания углерода

Русский

2013-01-06

175 KB

70 чел.

ЛАБОРАТОРНАЯ РАБОТА № 3.

Влияние углерода на твердость термически обработанных сталей

Цель работы. Установить зависимость между содержанием углерода в стали и ее твердостью после отжига и закалки.

ОБЩИЕ ПОЛОНЕНИЯ

Механические свойства сталей, в том числе и твердость, зависят от их внутреннего строения. Строение углеродистой стали прежде всего зависит от ее химического состава, который в основном характеризуется содержаниям углерода. При постоянном составе стали ее структурное состояние может быть изменено термической обработкой.

Из существующих видов термической обработки отжиг, с одной стороны, и закалка -с другой, дают наиболее резкое отличие в структуре и свойствах стали. В результате отжига сталь приобретает структуру, близкую к равновесной, прочностные свойства углеродистой стали при этом отличается сравнительно низким уровнем, а пластические - повышенным. Закалка, наоборот, дает крайне неравновесную структуру, высокие значения прочностных свойств и низкие - пластических.

Влияние углерода на структуру и свойства отожженных сталей

Ранее были изучены структуры чистых железоуглеродистых сплавов. Технические стали отличатся от чистых железоуглеродистых сплавов тем что содержат, кроме железа и углерода, еще ряд элементов примесей неизбежно попадающих в стали в связи с условием производства (плавки).

Если содержание примесей не превышает количества, указанного в ГОСТ 380-88, то их влияние на свойства сталей незначительно. Следовательно, структура и свойства технических сталей могут характеризоваться почти так же, как и чистых двойных сплавов, то есть в полном соответствии с диаграммой состояния железо - углерод. В соответствии с диаграммой состояния после отжига в равновесном состоянии структура стали представляет собой смесь феррита и цементита, в которой количество последнего увеличивается пропорционально содержанию углерода. Ясно, что свойства медленно охлажденных (отожженных) сталей будут определяться прежде всего свойствами и количеством составляющих фаз. Основной (преобладающей) фазой в сталях является феррит. Механические свойства феррита характеризуются следующими величинами:

Предел прочности при растяжении, МПа 250

Предел текучести при растяжении, МПа 120

Относительное удлинение, % 50

Относительное сужение, % 85

Твердость, НВ 80

Эти показатели могут, изменяться в некоторых пределах, так как на свойства феррита влияет ряд факторов (например, увеличение размеров зерен понижает твердость, а увеличение содержания примесей повышает твердость).

Цементит твердый (НВ - 800) и хрупкий. С изменением содержания углерода изменяется структура стали.

Структура технически чистого железа, содержащего до 0,006 %С, состоит только из феррита, что и определяет его низкие прочностные свойства. Технически чистое железо, содержащее 0,007 - 0, 02 , наряду с ферритом имеет в структуре небольшое (не более 0,29 %) количество цементита третичного, располагающегося в виде сравнительно крупных включений по границам ферритных зерен. Цементит третичный при таком его расположении оказывает незначительное влияние на прочностные свойства, несколько повышая их.

В структуре железоуглеродистых сплавов, содержащих свыше 0,02%С, появляется двухфазная структурная составляющая - перлит. Механические свойства перлита, в частности твердость, определяются количественным соотношением присутствующих в нем феррита (88%) и цементита (12%), так и формой и дисперсностью частичек цементита. Поэтому прочность перлита может изменяться от 550 МПа для крупнопластинчатого до 820 МПа для тонкопластинчатого, а твердость от НВ = 160 ед. до НВ = 250 ед.

Для, заэвтэктоидных сталей (углерода свыше 0,8э %), структура которых, кроме пластинчатого перлита, содержит цементит вторичный, наблюдается дальнейшее повышение твердости. Однако другая прочностная характеристика - предел прочности, достигнув наибольшего значения при 0,8 - 0,9%, при более высоких содержаниях углерода понижается. Это обусловлено наличием большого количества хрупкой цементитной фазы, а также тем, что часть ее (цементит вторичный) расположена в виде сплошной оболочки по границам зерен. В результате этого снижается сопротивление отрыву и предел прочности.

Пластические свойства сталей (относительное удлинение и относительное сужение, ударная вязкость) по мере увеличения содержания углерода в стали непрерывно понижаются.

ВЛИЯНИЕ УГЛЕРОДА НА СТРУКТУРУ И СВОЙСТВА ЗАКАЛЕННЫХ СТАЛЕЙ

Основная цель, преследуемая при закалке углеродистых сталей, - получение высоких прочностных свойств. Достигается эта цель за счет получения высокопрочной твердой мартенситной фазы, образующейся из аустенита при быстром охлаждении, то есть при мартенситном. превращении.

Мартенситное превращение в чистом железе и в безуглеродистых сплавах способно привести к повышению прочностных свойств по сравнению с отожженным состоянием. Так по сравнению с обычной ферритной структурой твердость железа а результате мартенситного превращения возрастает с 60 до 200 НV а предел прочности -с 200 до 900 МПа. Высокая твердость мартенсита объясняется повышенной плотностью дефектов в его решетке: двойниковых прослоек и дислокаций.

При закалке сталей достигается значительно большее упрочнение, чем в безуглеродистых железных сплавах, причем эффект закалки повышается с увеличением содержания углерода. Это можно объяснить следующим образом.

При мартенситном превращении в сталях весь углерод, растворенный в аустените остается в твердом растворе. Мартенсит - пересыщенный твердый раствор углерода в α - железе. Сохранение углерода в твердом растворе при мартенситном превращении вызывает искажение решетки, поэтому мартенсит имеет тетрагональную пространственную решетку, в которой один период С больше другого – А. Тетрагональность прямопропорциональна содержанию углерода. Большей пластичностью обладают более симметричные решетки, так как в них больше плоскостей легкого скольжения. Твердость же определяется сопротивлением внедрению в тело индентора, что связано с пластичностью.

Очень большое влияние на твердость мартенсита оказывает фазовый наклеп, возникающий при закалке стали. Природа фазового наклепа заключается в следующем. Мартенсит по сравнению с другими фазовыми составляющими стали и особенно аустенитом имеет наибольший удельный объем. Поскольку рост мартенситных кристаллов протекает с увеличением объема, то окружающий аустенит и мартенситные пластины подвергаются сильному наклепу. Этот наклеп называется фазовым, так как он связан с фазовым превращением.

С увеличением содержания углерода в стали удельный объем мартенсита возрастает значительно интенсивнее, чем удельный объем аустенита.

Необходимо помнить, что в зависимости от температуры нагрева закалку называют полной и неполной. При полной закалке сталь переводят в однофазное состояние, то есть нагревают выше критической температуры Ac3, при неполной закалке сталь нагревают до межкритических температур - между Ас1 и Ac3.

При быстром охлаждении в процессе закалки не весь аустенит успевает превратиться в мартенсит. Остается какая то его часть – остаточный аустенит, приводящий к снижению твердости и прочности. Количество остаточного аустенита прямопропорциоанально количеству углерода в стали.

Таким образом, углерод оказывает существенное влияние на структуру и свойства как отожженных, так и закаленных сталей.

ВОПРОСЫ ДОЯ САМОПОДГОТОВКИ

  1.  Что называется ферритом, аустенитом, мартенситом?
  2.  Как называется пересыщенный твердый раствор углерода в α - железе?
  3.  Как изменяется количество остаточного аустенита при закалке сталей при увеличении содержания углерода?
  4.  Какая температура нагрева является оптимальной для закалки доэвтектоидной стали?
  5.  Какая температура нагрева является оптимальной для закалки заэвтектоидной стали?
  6.  Какой кристаллической решеткой обладает феррит?
  7.  Какой кристаллической решеткой обладает аустенит?
  8.  Какой кристаллической решеткой обладает мартенсит углеродистой стали?
  9.  Что из себя представляет структура закаленной стали?
  10.  При какой скорости охлаждения стали в ней возможно образование остаточного аустенита?
  11.  При какой скорости охлаждения углеродистой стали в ней возможно образование мартенсита?

  1.  С каким содержанием углерода сталь дает максимальную твердость после закалки в воде?
  2.  Какой метод замера макротвердости пригоден для стали, закаленной на мартенсит?
  3.  Какое содержание углерода в стали не дает остаточного аустенита при закалке?
  4.  Каким видом термической обработки можно уменьшить количество остаточного аустенита в закаленной стали при сохранении мартенситной структуры?

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1.  Отожженные образцы сталей с различным содержанием углерода зачистить с двух торцов на абразивном камне, после чего произвести измерение твердости на приборе Роквелла.
  2.  Часть образцов с различным содержанием углерода нагреть и выдержать в течение 15 минут в электрических: муфельных печах при температуре выше Ас3 с1) на 30 - 50°с. После выдержки образцы закалить в воде.
  3.  Все закаленные образцы зачистить с торцов на абразивном круге и произвести измерение твердости на приборе Роквелла.
  4.  Полученные результаты измерений твердости занести в таблицу.


 

А также другие работы, которые могут Вас заинтересовать

65256. ДЕРЖАВНЕ РЕГУЛЮВАННЯ СУСПІЛЬНИХ ВІДНОСИН В ГАЛУЗІ ОХОРОНИ ЗДОРОВ’Я УКРАЇНИ: ІСТОРИЧНІ ТА ПРАВОВІ АСПЕКТИ 190 KB
  Державне регулювання медичної діяльності в Україні є невід’ємною частиною державної політики та державного управління в галузі охорони здоров’я. Однак законодавство охорони здоров’я як важливий інструмент державного управління галуззю в нашій державі ще не виділено в окремий інститут права.
65257. Гуманітаризація вищої культурологічної освіти в Україні ХХ – ХХІ століття 157 KB
  Серед проблем без розвязання яких неможливий процес розбудови суверенної української держави важливе місце посідає створення сучасної системи культурологічної освіти яка б враховувала багатовіковий досвід...
65258. Раціональне формування багатошарового штабелю для стабілізації його хімічного складу та підвищення використання залізорудної сировини 6.24 MB
  Ефективність технологічного процесу агломерації шихтових матеріалів та доменного переділу металургійних підприємств визначається їх базою сировини і якістю підготовки залізорудних матеріалів на рудних дворах.
65259. Особливості токсичного впливу протипухлинних засобів на прикладі циклофосфану, тамоксифену, 5-фторурацилу, естразину та їх гігієнічне регламентування у повітрі робочої зони 282.5 KB
  Мета дослідження – з’ясування характеру та можливого механізму розвитку метаболічних порушень під впливом антинеопластичних засобів різних груп та визначення пріоритетних критеріїв для їх гігієнічного регламентування у повітрі робочої зони.
65260. ОЧИЩЕННЯ ВОДНИХ СЕРЕДОВИЩ МАГНІТНИМ АКСІАЛЬНО-СИМЕТРИЧНИМ ПОЛЕМ 1.17 MB
  В практиці водоочищення відсутні дослідження впливу постійного аксіальносиметричного поперечного магнітного поля на заряджені домішки. Тому актуальними є встановлення закономірностей руху домішок водного розчину з урахуванням їх йонізації...
65261. УДОСКОНАЛЕННЯ КОНСТРУКЦІЇ ДИТЯЧОГО СПЕЦІАЛЬНОГО ВЗУТТЯ ДЛЯ СПОРТИВНИХ ТАНЦІВ 2.74 MB
  Однак взуттєвих підприємств спеціалізованих на виготовленні спортивного взуття поки що в Україні недостатньо. Ситуація ускладнюється ще й фактором використання нераціонального дитячого...
65262. Фізико-хімічні процеси при виготовленні великогабаритних фотоелектричних перетворювачів в умовах серійного виробництва 504.5 KB
  Найбільшої ефективності використання сонячної енергії досягнуто при прямому її перетворенні безпосередньо в електричну за допомогою напівпровідникових фотоелектричних перетворювачів ФЕП.
65263. ЕКСПРЕСИВНИЙ ПОТЕНЦІАЛ ЗАСОБІВ ВТОРИННОЇ НОМІНАЦІЇ В МОВІ НОВІТНЬОЇ УКРАЇНСЬКОЇ ПУБЛІЦИСТИКИ 151 KB
  Проблема вторинної номінації є однією з найважливіших та найскладніших проблем сучасної лінгвістики а функціональні засоби вторинної номінації обєктом уваги вчених різних філологічних шкіл і напрямків...
65264. ОПТИМІЗАЦІЯ ЕЛЕМЕНТІВ ТЕХНОЛОГІЇ ВИРОЩУВАННЯ ПІЗНЬОСТИГЛИХ СОРТІВ КАПУСТИ БІЛОГОЛОВОЇ В УМОВАХ ПІВДЕННО-ЗАХІДНОЇ ЧАСТИНИ ЛІСОСТЕПУ УКРАЇНИ 515.98 KB
  На сучасному етапі розвитку овочівництва у звязку з постійним дорожчанням ресурсів і посиленням вимог до якості товарної продукції капусти білоголової широкого розвитку набуває науково обґрунтоване застосування мінеральних добрив...