11292

Электропроводность полупроводников

Лабораторная работа

Физика

Электропроводность полупроводников Указания содержат краткие сведения об электропроводности полупроводников основы зонной теории твердых тел и порядок выполнения лабораторной работы. Методические указания предназначены для выполнения лабораторной работы студен...

Русский

2013-04-05

666 KB

90 чел.

Электропроводность полупроводников

Указания содержат краткие сведения об электропроводности полупроводников, основы зонной теории твердых тел и порядок выполнения лабораторной работы.

Методические указания предназначены для выполнения лабораторной работы студентами всех форм обучения в лабораторном практикуме по физике (раздел «Оптика») и "Физическим основам измерений".

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

Цель работы: снятие вольтамперной характеристики и исследование температурной зависимости сопротивления полупроводникового термистора.

Краткая теория

 

Полупроводники – это широкий класс веществ, занимающих промежуточное положение по значению удельной электропроводности между металлами (= (106 - 108) Ом-1 м-1) и  диэлектриками          (= (10-10 - 10-11) Ом-1 м-1) (значения указаны при комнатной температуре). Главная особенность полупроводников - их способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий (температуры, освещения, электрического и магнитного полей и др.); при этом  может изменяться до 108 раз. От металлов полупроводники отличаются характером зависимости проводимости от температуры: у металлов она слабо уменьшается, а у полупроводников – существенно  увеличивается с ростом температуры.

В основе описания свойств полупроводников лежит зонная теория твердых тел.  Энергетический спектр электронов в кристалле имеет зонную структуру. На каждом уровне, согласно представлениям квантовой механики (принципу Паули) может находиться не более двух электронов. Электропроводность кристаллов определяется степенью заполнения электронами самой верхней, заполненной валентными электронами, зоны разрешенных состояний. Эту зону принято называть валентной зоной (или v -зона). Следующая зона разрешенных состояний электронов называется зоной проводимости (или c -зона). Между ними находится энергетический промежуток, в котором электроны находиться не могут - запрещенная зона (ее энергетическую ширину обычно обозначают ). Разделение твердых тел на металлы, изоляторы и полупроводники определяется степенью заполнения валентной зоны и шириной зоны запрещенных состояний (рис. 1).

У металлов валентная зона заполнена частично или перекрывается с зоной проводимости. При приложении электрического поля к кристаллу валентные электроны получают дополнительную энергию и переходят на более высокие энергетические уровни, что с точки зрения зонной теории рассматривается как протекание электрического тока.
           У диэлектриков валентная зона заполнена электронами полн
остью, а запрещенная зона достаточно велика (порядка 3 - 5 эВ). Для получения заметной электропроводности кристалл необходимо нагреть до высоких температур.

У полупроводников валентная зона заполнена полностью, а ширина запрещенной зоны соизмерима с тепловой энергией электронов (не более 2,5-3,0 эВ; ). При абсолютном нуле (Т=0) зона проводимости свободна и электропроводность полупроводников равна нулю. С ростом температуры часть валентных электронов может получить тепловую энергию, достаточную для переброса их в зону проводимости и тогда, при приложении внешнего электрического поля, эти носители      заряда смогут принять участие в электропроводности.

Экспериментально установлено, что электропроводность полупроводников увеличивается с повышением температуры Т по экспоненциальному закону:

,                                     (1)

где 0 – удельная электропроводность полупроводника при  температуре, когда все электроны из валентной зоны перешли в зону проводимости,
– постоянная Боль
цмана,  - ширина запрещенной зоны.        

Рис. 1. Зонные схемы твердых тел.

             Собственные полупроводникиэто химически чистые полупроводники (например, 4-валентные Si, Ge, 6-валентный Se ) или химические соединения (GaAs, CdS и др.). Собственной проводимостью полупроводника называется проводимость, обусловленная носителями, образовавшимися вследствие перехода электронов из валентной зоны в зону проводимости. При температуре, близкой к абсолютному нулю, все уровни в валентной зоне полностью заполнены, а в зоне проводимости – свободны, и полупроводник по свойствам близок к диэлектрику. Повышение температуры приводит к тому, что часть электронов из валентной зоны переходит в зону проводимости; каждый такой электрон оставляет после себя в валентной зоне свободное место – “дырку”, рассматриваемую как эквивалентный электрону положительный заряд (). Следовательно, электрон и дырка рождаются одновременно – парой. При наличии электронов в зоне проводимости и дырок в валентной зоне полупроводник проводит электрический ток. Полную удельную электропроводность собственного полупроводника можно представить в виде суммы двух слагаемых:


                              ,                   (2)

где n и р - концентрации электронов и дырок, - подвижности электронов и дырок соответственно. Подвижность определяет среднюю скорость частицы в единичном электрическом поле и измеряется в м2/(Вс). В большинстве случаев подвижность электронов больше подвижности дырок. Следовательно, при равных концентрациях n и р электронная составляющая электропроводности будет больше дырочной, т. е. собственная проводимость полупроводника будет электронной (n - типа). Следует отметить, что одновременно с процессом генерации электронов и дырок в полупроводниковом кристалле идет процесс рекомбинации - процесс возврата электронов в валентную зону.  Рис. 2 иллюстрирует механизм возникновения собственной проводимости полупроводника. В обычных условиях собственной электропроводностью могут обладать лишь идеально чистые кристаллы.

      

Рис. 2. Собственная проводимость полупроводников.

             Примесная проводимость полупроводников обусловлена наличием примесей. Введение примеси (порядка 0,01%) изменяет энергетическую структуру полупроводника, в запрещенной зоне появляются локальные энергетические состояния.

              Если атом примеси имеет валентность большую, чем атомы полупроводника (например, примесь AsV в GeIV), то один из электронов примеси оказывается слабо связанным с ядром, и уже при малых энергиях возбуждения он может стать свободным. Поскольку электрический ток в этом случае обусловлен в основном движением именно таких, слабо связанных электронов, то говорят, что полупроводник обладает
электронной (n - тип) проводимостью, а примесь называется донорной. Введение в кристаллическую решетку полупроводника атомов примеси с меньшей валентностью (например, примесь BIII в SiIV) приводит к тому, что атом примеси захватывает один из электронов у атома полупроводника, который может захватить электрон у соседнего атома – возникает “дырка”. Электропроводность в этом случае будет дырочной (p - тип), а примесь - акцепторной. Уровни атомов донорной или акцепторной примесей называют соответственно донорными или акцепторными  примесными уровням. Примесные донорные уровни располагаются в запрещенной зоне на расстоянии нескольких десятых или сотых долей электронвольта (эВ) от нижнего края зоны проводимости, а для акцепторной примеси - вблизи от верхней границы валентной зоны.

            При температуре T=0 донорные уровни полностью заполнены электронами, а акцепторные - свободны (т. е. заполнены дырками). С повышением температуры начинается ионизация примесей. Электроны с донорных уровней переходят в зону проводимости, а дырки – в валентную зону (рис. 3), что приводит к увеличению электропроводности полупроводника и уменьшению его сопротивления. С повышением температуры все существеннее становится вклад в электропроводность носителей заряда, связанных с собственной проводимостью. При высоких температурах преобладает собственная проводимость.

Рис. 3. Электронная (а) и дырочная (б ) проводимость примесных
пол
упроводников.

        

Принцип действия термосопротивлений

Термосопротивления (термисторы) - полупроводниковые приборы, принцип действия которых основан на зависимости электрической проводимости полупроводников от температуры. Сопротивление терморезисторов при комнатной температуре лежит в пределах от нескольких Ом до десятков MОм.

Вольтамперная характеристика (ВАХ) терморезистора (рис. 4) представлена тремя основными участками: ОА, АВ и ВС. На начальном участке ОА характеристика линейна, т.к. при малых токах мощность, выделяющаяся в термисторе за счет джоулева тепла, мала и заметно не влияет на его температуру.  На участке АВ линейность характеристики нарушается. С ростом тока температура термистора за счет джоулева тепла повышается, а его сопротивление, вследствие увеличения концентрации носителей зарядов (электронов и дырок) уменьшается. На конечном участке ВС характеристика становится почти параллельной оси абсцисс, что делает возможным применение некоторых типов терморезисторов для стабилизации напряжения.

 Рис. 4. Вольтамперная характеристика терморезистора.

Зависимость сопротивления полупроводника от температуры

          При повышении температуры сопротивление примесного полупроводника уменьшается по закону:

,                                      (3)

где - константа для данного полупроводника, k  постоянная Больцмана; – энергия активации примеси - энергия, необходимая для перевода электронов с уровня донорной примеси в зону проводимости или для захвата электронов из валентной зоны на акцепторный уровень.

              Для определения энергии активации прологарифмируем выражение для R:  . Построив график зависимости , по наклону прямой (рис. 5) можно определить энергию активации примесного уровня полупроводника, т.к. . В итоге энергия активации равна

,                                       (4),

где =1,3810 - 23 Дж/K (постоянная Больцмана).

Рис. 5. Зависимость  для примесных полупроводников.

Порядок выполнения работы

Задание 1. Снятие вольтамперной характеристики терморезистора.

Приборы и оборудование: блок питания ВУП 2М, терморезистор, вольтметр, миллиамперметр, соединительные провода.

  1.  Собрать схему (рис.6); для миллиамперметра использовать
    предел 15
    mA, для вольтметра предел указан на рабочем месте. Определить цены деления миллиамперметра и вольтметра.
  2.  Подключить источник постоянного тока (клеммы 0 -100 В на блоке питания ВУП 2М).
  3.  Устанавливая с помощью регулятора напряжения  1  (см. рис. 6) значения силы тока в пределах от 1 до 12 mA с шагом 1 mA, снять зависимость напряжения U от силы тока I. Результаты занести в таблицу 1.
  4.  Построить зависимость U(I) (ВАХ) термистора (см. рис. 4).

Рис. 6. 1 - источник постоянного тока ВУП 2М, 2  - миллиамперметр,
3 - воль
тметр, 4 – терморезистор.

Таблица 1

I, mA

1

2

3

4

5

6

7

8

9

10

11

12

U, B

Задание 2. Изучение температурной зависимости сопротивления
полупроводникового термистора и определение энергии активации
пр
имеси.

Приборы и оборудование: блок питания ВУП 2М, терморезистор, нагреватель, термометр, мультиметр (электронный многопредельный прибор для измерения напряжений и сопротивлений), соединительные провода.

  1.  Собрать схему на рис. 7 (термометр и мультиметр получить у инженера), для мультиметра использовать предел R max = 2 кОм.
  2.  Подключить нерегулируемый источник переменного тока                (клеммы 6.3 В на блоке ВУП 2М).
  3.  В процессе нагрева термистора через каждые 5о снимать показания мультиметра в интервале температур начиная от комнатной до 60 оС. Измерения занести в таблицу 2.
  4.  По данным таблицы 2 построить графики и
    (см. рис. 5).
  5.  По графику зависимости определить  и по формуле (4) вычислить энергию активации примеси , выразить ее в электронвольтах ().

            

Рис. 7. 1 - источник переменного тока ВУП 2М,
2 - нагреватель, 3 – термометр, 4 - терморезистор, 5 – мультиметр.

Таблица 2

t, oC

T, К

R, Ом

lnR

Контрольные вопросы (для защиты)

  1.  В чем отличие полупроводников от металлов и диэлектриков?
  2.  Чем различаются зонные схемы металлов, полупроводников и диэлектриков?
  3.  Чем обусловлена собственная проводимость полупроводников?
  4.  Какие полупроводники называют полупроводниками n-типа и p-типа?
  5.  Каков механизм электронной и дырочной примесной проводимости полупроводников?
  6.  Как зависит сопротивление полупроводника от температуры?
  7.  Что такое энергия активации примеси и как ее определяют в данной работе?

Правила техники безопасности. При выполнении работы необходимо убедится, что все токоведущие части электрической схемы изолированы. Категорически запрещается касаться руками или другими предметами зажимов цепи, находящихся под напряжением. По окончании работы обязательно отключите электрическую схему от источника напряжения.


 

А также другие работы, которые могут Вас заинтересовать

42412. Композиция в технике 149 KB
  Например литая несущая конструкция должна быть такой формы чтобы не возникало сомнений это именно литье а не сварная или какаялибо иная конструкция. Поэтому можно говорить о тектонике литой формы тектонике легких штампованных несущих элементов и тектонике пластмассовых конструкций. Образно говоря тектоника это искренность формы в отношении конструкции и материала. Объемнопространственную структуру можно определить как эстетически осмысленную взаимосвязь формы предмета с его внутренним строением и внешним пространством рассмотрите...
42413. Построение изображения на плоскости 183.5 KB
  Точка съемки определятся следующими параметрами координатами: а удаленностью от объекта т. расстоянием с которого ведется съемка; б высотой установки фото или видеокамеры; в смещением фото или видеокамеры в сторону от ее центрального положения относительно снимаемого объекта определяющем направление съемки. Удаленность от объекта определяет масштаб изображения который увеличивается с приближением точки съемки к объекту и уменьшается с увеличением расстояния между точкой установки камеры и снимаемым объектом.
42414. Компьютерная дискретная математика 180.5 KB
  Высказывание  повествовательное утверждение которое имеет значение истинности т. Простое высказывание называется атомом сложное молекулой. Например: не Р это высказывание земля не плоская; Р или Q земля плоская или Маша доктор; Р и Q земля плоская и Маша доктор. Обозначим через Р высказывание логика забава а через Q сегодня пятница.
42415. Логика и доказательство. Доказательство: прямое, обратное, от противного. Метод математической индукции 73 KB
  Метод математической индукции. Рассмотреть метод математической индукции. Метод математической индукции можно сравнить с прогрессом. Принцип математической индукции  это следующая теорема: Пусть мы имеем бесконечную последовательность утверждений P1 P2 .
42416. Теория множеств. Операции над множествами. Диаграммы Венна 758 KB
  Тип данных представляет собой множество объектов со списком стандартных операций над ними. Множество  это совокупность объектов называемых элементами множества. Объекты которые образуют множество называются элементами этого множества. Пример: Множество S = {3 2 11 5 7}  элементы множества записывают в фигурных скобках.
42417. Бинарные отношения. Симметричные отношения 141.5 KB
  Определение 6: Отношение  на множестве Х называется рефлексивным если для любого элемента хХ выполняется хх. Определение 7: Отношение  на множестве Х называется симметричным если для любых хуХ из ху следует ух. Определение 8: Отношение  на множестве Х называется транзитивным если для любых хуzХ из ху yz следует xz. Определение 9: Отношение  на множестве Х называется антисимметричным если для любых xy X из xy и yx следует x=y.
42418. Функции. Принцип Дирихле 46 KB
  Докажите что либо одно из них делится на 5 либо сумма нескольких рядом стоящих чисел делится на 5. Докажите что какието три из них можно накрыть квадратиком со стороной 02 м. Докажите что найдутся как минимум 2 ученика отмечающих дни рождения в один месяц. Докажите что расстояние между некоторыми двумя из них меньше 05 см.
42419. Комбинаторика. Основные комбинаторные принципы и соединения 198.5 KB
  Введем некоторые важные обозначения: множества будем обозначать заглавными буквами; множества состоят из элементов которые будем обозначать малыми буквами. Такие множества будем изображать перечислением элементов заключая их в фигурные скобки. 3 Количество элементов в множестве называется мощностью и записывается как . Комбинаторные соединения Некоторая совокупность элементов данного nмножества называется выборкой.
42420. Булева алгебра. Законы логики высказываний. Эквивалентные преобразования 83 KB
  Законы логики высказываний. Теоретическая часть Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса: 1 тождественно истинные тавтология; 2 тождественно ложные противоречие; 3 нейтральные. Особое место в логике высказываний занимают законы логики тождественно истинные формулы тавтологии. Законы логики высказываний Закон тождества: А эквивалентно А.