11295

Определение индукции магнитного поля соленоида

Лабораторная работа

Физика

Определение индукции магнитного поля соленоида Указания содержат краткое описание рабочей установки и методику определения индукции магнитного поля соленоида. Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лаборат

Русский

2013-04-05

254 KB

43 чел.

Определение индукции магнитного поля соленоида

Указания содержат краткое описание рабочей установки и методику определения индукции магнитного поля соленоида. Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Электричество и магнетизм»).

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Рецензент    доцент Кудря А.П.

© Издательский центр ДГГУ, 2012

I. Цель работы:  

  1. Измерить индукцию магнитного поля соленоида при различных значениях силы тока, протекающего по соленоиду.

  2. Построить график зависимости индукции магнитного поля соленоида от силы тока.

II. Приборы и принадлежности: источник тока, выпрямитель, реостат, амперметр, компас, переключатель направления тока, соленоид с подвешенным внутри постоянным магнитом, секундомер.

 

III. Теория метода и описание установки

В данной работе измерение индукции магнитного поля внутри соленоида проводится с помощью магнитометра, представляющего собой небольшой постоянный магнит (магнитная стрелка), подвешенный на нити (рис.1). Магнитная стрелка, которая может вращаться лишь около вертикальной оси, располагается в центре соленоида, где поле можно считать однородным. Соленоид устанавливается вдоль горизонтальной составляющей вектора магнитной индукции магнитного поля Земли с помощью компаса. В этом положении соленоида магнитная стрелка, следовательно, и вектор магнитного момента , будут направлены вдоль  его оси.

Рис. 1

   Рис. 2

При отклонении стрелки на небольшой угол  от положения равновесия (рис. 2) возникает крутящий момент нити (им можно пренебречь) и вращающий момент силы со стороны магнитного поля, под действием которого стрелка будет совершать свободные незатухающие крутильные колебания (сопротивлением воздуха и трением в подвесе пренебрегаем).

Модуль момента силы равен . Учитывая, что при малых углах закручивания , а вектор вращающего момента  и вектор углового перемещения  направлены в противоположные стороны, можно записать

                            ,                                     (1)

где – вращающий момент, – магнитный момент стрелки,  – угол поворота стрелки.

     Согласно основному уравнению динамики вращательного движения                    .                                        (2)

Сравнивая (1) и (2), получаем:     ,                 (3)

где – момент инерции магнита. Разделив уравнение (3) на  получаем:                      .                             (4)

Вводим обозначение: . Тогда уравнение (4) примет вид:

.                              (5)

Уравнение (5) представляет собой дифференциальное уравнение свободных незатухающих колебаний стрелки с частотой .  Период колебаний , откуда

      или                 ,                         (6)

где  – постоянная величина для данного магнитометра.

       Согласно принципу суперпозиции индукция результирующего поля равна векторной  сумме индукций магнитных полей Земли  и соленоида :  .

       Чтобы исключить влияние магнитного поля Земли на определение величины индукции магнитного поля соленоида, измеряют время  колебаний магнитной стрелки в двух случаях: при одинаковом направлении векторов индукции поля Земли  и соленоида  и противоположном. Изменения направления вектора  добиваются переключением направления тока в соленоиде на противоположное.

В первом случае модуль индукции результирующего поля  , где , а во втором , где .

Получаем систему уравнений:

.

Из системы находим индукцию магнитного поля соленоида:

                        ,                                 (7)

где  – постоянная величина, указанная на установке,  и - периоды колебаний магнитной стрелки при противоположных направлениях тока в соленоиде.

IV. Экспериментальная часть

  1.  Собрать электрическую цепь из соленоида С, амперметра А, реостата R, ключа переключателя П, выпрямителя, согласно схеме, приведенной на рис.3.
  2.  Установить соленоид вдоль магнитного поля Земли с помощью компаса.
  3.  Включить выпрямитель в сеть. Изменяя положение движка реостата , установить силу тока в соленоиде от 1А до 5А через 1А, измерить период колебаний  для каждого значения силы тока. Для этого необходимо:

а) лёгким толчком вывести магнитную стрелку из положения равновесия;

б) отсчитать по секундомеру время   полных колебаний стрелки;

в) вычислить по формуле  период колебаний  для каждого значения силы тока. Результаты занести в таблицу.

Рис. 3

  1.  Изменить направление силы тока в соленоиде с помощью ключа переключателя П. При этом магнитная стрелка в соленоиде поменяет свое направление на противоположное.
  2.   Повторить пункт 3 (а, б, в) для определения периода колебаний . Результаты занести в таблицу.
  3.  По формуле (7) вычислить индукцию магнитного поля соленоида для каждой пары  и  , т.е. при одном и том же значении прямого и обратного тока.
  4.  Построить график зависимости .

                                                                                  Таблица    

№/№

п/п

А

с

с

с

с

Тл

%

Тл

1

1

2

2

3

3

4

4

5

5

  1.  Рассчитать относительную  и абсолютную погрешности для всех измерений по формулам:

;

,

где 0,01c - погрешность секундомера.

Контрольные вопросы

  1.  Дать определение индукции магнитного поля. Единица измерения.
  2.  Как определяется направление вектора ?
  3.  Принцип суперпозиции магнитных полей.
  4.  Сформулировать закон Ампера.
  5.  Как определяется направление силы, действующей на проводник с током?
  6.  Сформулировать закон Био-Савара-Лапласа.
  7.  Вывести рабочую формулу индукции магнитного поля на оси соленоида.

Техника безопасности

  1.  К работе с установкой допускаются лица, ознакомленные с её устройством и принципом действия.
  2.  Подключение установки к сети допускается только после проверки электрической цепи инженером или преподавателем.

Рекомендуемая  литература 

Савельев И.В.  Курс общей физики. (т. 3) / И.В. Савельев.
– СПб.: Лань, 2006.

Трофимова Т.И. Курс физики / Т.И. Трофимова. – М.: Высш. шк., 2004.   

Кунаков В.В. Магнетизм: учеб. пособие / В.В. Кунаков, О.А. Лещёва, И.В. Мардасова, О.М. Холодова. – Ростов н/Д: Издательский центр ДГТУ, 2011.

Редактор Т.В. Колесникова

_________________________________________________________

В печать 31.01.2012

Объём 0,5 усл. п.л. Офсет. Формат 60x84/16.

Бумага тип №3. Заказ №     .Тираж 60 экз. Цена свободная

________________________________________________________

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344000, г. Ростов-на-Дону, пл. Гагарина, 1


EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

220В

А

Выпрямитель

П

R

С


 

А также другие работы, которые могут Вас заинтересовать

11620. Исследование напряженно-деформированного состояния стержня переменного сечения при растяжении-сжатии 632.5 KB
  ЛАБОРАТОРНАЯ РАБОТА ПО МЕХАНИКЕ СПЛОШНЫХ СРЕД № 1 Часть 1 Механика деформируемого твердого тела Тема Исследование напряженно-деформированного состояния стержня переменного сечения при растяжении-сжатии Задание Для заданной упругой системы рис. 1...
11621. Исследование напряженно-деформированного состояния стержня при поперечном изгибе 570.5 KB
  ЛАБОРАТОРНАЯ РАБОТА ПО МЕХАНИКЕ СПЛОШНЫХ СРЕД № 3 Тема:Исследование напряженно-деформированного состояния стержня при поперечном изгибе Задание Для заданной упругой системы рис. 1 исследовать напряженно-деформированное состояние при поперечном изг...
11622. Особенности разработки диаграмм вариантов использования в среде IBM Rational Rose 2003 249 KB
  Лабораторная работа №1 Особенности разработки диаграмм вариантов использования в среде IBM Rational Rose 2003 Работа над моделью в среде IBM Rational Rose начинается с общего анализа проблемы и построения диаграммы вариантов использования которая отражает функциональное назначение...
11623. Общая характеристика CASE-средства IBM Rational Rose 2003 и его функциональные возможности 302.5 KB
  Общая характеристика CASEсредства IBM Rational Rose 2003 и его функциональные возможности. Среди всех фирмпроизводителей CASEсредств именно компания IBM Rational Software Corp. до августа 2003 года Rational Software Corp. одна из первых осознала стратегическую перспективность развития объектноорие...
11624. Особенности разработки диаграмм классов в среде IBM Rational Rose 2003 176.5 KB
  Лабораторная работа №2 часть1 Особенности разработки диаграмм классов в среде IBM Rational Rose 2003 Диаграмма классов является основным логическим представлением модели и содержит детальную информацию о внутреннем устройстве объектноориентированной программной системы и...
11625. Добавление и редактирование атрибутов классов 163.5 KB
  Лабораторная работа №2 часть2 Добавление и редактирование атрибутов классов Из всех графических элементов среды IBM Rational Rose 2003 класс обладает максимальным набором свойств главными из которых являются его атрибуты и операции. Поскольку именно диаграмма классов исполь...
11626. Добавление отношений на диаграмму классов и редактирование их свойств 183 KB
  Лабораторная работа №2 часть3 Добавление отношений на диаграмму классов и редактирование их свойств Диаграмма классов является логическим представлением структуры модели поэтому она должна содержать столько классов сколько необходимо для реализации всего проек
11627. Определение относительной теплоемкости газа 49 KB
  ОТЧЁТ по лабораторной работе № 4 Определение относительной теплоемкости газа. Цель работы: определить теплоемкость воздуха при постоянном объеме и температуре. Схема установки и расчётная формула: 4
11628. ГЕОДЕЗИЧЕСКИЙ КОНТРОЛЬ ОСАДОК ЗДАНИЙ И СООРУЖЕНИЙ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ 922.5 KB
  Наблюдения за деформациями сооружений преследуют как научные цели (обоснование правильности теоретических расчетов устойчивости сооружений), так и производственно-технические (нормальная эксплуатация сооружения и принятие профилактических мер при выявленных недопустимых величинах деформаций).