11295

Определение индукции магнитного поля соленоида

Лабораторная работа

Физика

Определение индукции магнитного поля соленоида Указания содержат краткое описание рабочей установки и методику определения индукции магнитного поля соленоида. Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лаборат

Русский

2013-04-05

254 KB

43 чел.

Определение индукции магнитного поля соленоида

Указания содержат краткое описание рабочей установки и методику определения индукции магнитного поля соленоида. Методические указания предназначены для студентов инженерных специальностей всех форм обучения в лабораторном практикуме по физике (раздел «Электричество и магнетизм»).

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Рецензент    доцент Кудря А.П.

© Издательский центр ДГГУ, 2012

I. Цель работы:  

  1. Измерить индукцию магнитного поля соленоида при различных значениях силы тока, протекающего по соленоиду.

  2. Построить график зависимости индукции магнитного поля соленоида от силы тока.

II. Приборы и принадлежности: источник тока, выпрямитель, реостат, амперметр, компас, переключатель направления тока, соленоид с подвешенным внутри постоянным магнитом, секундомер.

 

III. Теория метода и описание установки

В данной работе измерение индукции магнитного поля внутри соленоида проводится с помощью магнитометра, представляющего собой небольшой постоянный магнит (магнитная стрелка), подвешенный на нити (рис.1). Магнитная стрелка, которая может вращаться лишь около вертикальной оси, располагается в центре соленоида, где поле можно считать однородным. Соленоид устанавливается вдоль горизонтальной составляющей вектора магнитной индукции магнитного поля Земли с помощью компаса. В этом положении соленоида магнитная стрелка, следовательно, и вектор магнитного момента , будут направлены вдоль  его оси.

Рис. 1

   Рис. 2

При отклонении стрелки на небольшой угол  от положения равновесия (рис. 2) возникает крутящий момент нити (им можно пренебречь) и вращающий момент силы со стороны магнитного поля, под действием которого стрелка будет совершать свободные незатухающие крутильные колебания (сопротивлением воздуха и трением в подвесе пренебрегаем).

Модуль момента силы равен . Учитывая, что при малых углах закручивания , а вектор вращающего момента  и вектор углового перемещения  направлены в противоположные стороны, можно записать

                            ,                                     (1)

где – вращающий момент, – магнитный момент стрелки,  – угол поворота стрелки.

     Согласно основному уравнению динамики вращательного движения                    .                                        (2)

Сравнивая (1) и (2), получаем:     ,                 (3)

где – момент инерции магнита. Разделив уравнение (3) на  получаем:                      .                             (4)

Вводим обозначение: . Тогда уравнение (4) примет вид:

.                              (5)

Уравнение (5) представляет собой дифференциальное уравнение свободных незатухающих колебаний стрелки с частотой .  Период колебаний , откуда

      или                 ,                         (6)

где  – постоянная величина для данного магнитометра.

       Согласно принципу суперпозиции индукция результирующего поля равна векторной  сумме индукций магнитных полей Земли  и соленоида :  .

       Чтобы исключить влияние магнитного поля Земли на определение величины индукции магнитного поля соленоида, измеряют время  колебаний магнитной стрелки в двух случаях: при одинаковом направлении векторов индукции поля Земли  и соленоида  и противоположном. Изменения направления вектора  добиваются переключением направления тока в соленоиде на противоположное.

В первом случае модуль индукции результирующего поля  , где , а во втором , где .

Получаем систему уравнений:

.

Из системы находим индукцию магнитного поля соленоида:

                        ,                                 (7)

где  – постоянная величина, указанная на установке,  и - периоды колебаний магнитной стрелки при противоположных направлениях тока в соленоиде.

IV. Экспериментальная часть

  1.  Собрать электрическую цепь из соленоида С, амперметра А, реостата R, ключа переключателя П, выпрямителя, согласно схеме, приведенной на рис.3.
  2.  Установить соленоид вдоль магнитного поля Земли с помощью компаса.
  3.  Включить выпрямитель в сеть. Изменяя положение движка реостата , установить силу тока в соленоиде от 1А до 5А через 1А, измерить период колебаний  для каждого значения силы тока. Для этого необходимо:

а) лёгким толчком вывести магнитную стрелку из положения равновесия;

б) отсчитать по секундомеру время   полных колебаний стрелки;

в) вычислить по формуле  период колебаний  для каждого значения силы тока. Результаты занести в таблицу.

Рис. 3

  1.  Изменить направление силы тока в соленоиде с помощью ключа переключателя П. При этом магнитная стрелка в соленоиде поменяет свое направление на противоположное.
  2.   Повторить пункт 3 (а, б, в) для определения периода колебаний . Результаты занести в таблицу.
  3.  По формуле (7) вычислить индукцию магнитного поля соленоида для каждой пары  и  , т.е. при одном и том же значении прямого и обратного тока.
  4.  Построить график зависимости .

                                                                                  Таблица    

№/№

п/п

А

с

с

с

с

Тл

%

Тл

1

1

2

2

3

3

4

4

5

5

  1.  Рассчитать относительную  и абсолютную погрешности для всех измерений по формулам:

;

,

где 0,01c - погрешность секундомера.

Контрольные вопросы

  1.  Дать определение индукции магнитного поля. Единица измерения.
  2.  Как определяется направление вектора ?
  3.  Принцип суперпозиции магнитных полей.
  4.  Сформулировать закон Ампера.
  5.  Как определяется направление силы, действующей на проводник с током?
  6.  Сформулировать закон Био-Савара-Лапласа.
  7.  Вывести рабочую формулу индукции магнитного поля на оси соленоида.

Техника безопасности

  1.  К работе с установкой допускаются лица, ознакомленные с её устройством и принципом действия.
  2.  Подключение установки к сети допускается только после проверки электрической цепи инженером или преподавателем.

Рекомендуемая  литература 

Савельев И.В.  Курс общей физики. (т. 3) / И.В. Савельев.
– СПб.: Лань, 2006.

Трофимова Т.И. Курс физики / Т.И. Трофимова. – М.: Высш. шк., 2004.   

Кунаков В.В. Магнетизм: учеб. пособие / В.В. Кунаков, О.А. Лещёва, И.В. Мардасова, О.М. Холодова. – Ростов н/Д: Издательский центр ДГТУ, 2011.

Редактор Т.В. Колесникова

_________________________________________________________

В печать 31.01.2012

Объём 0,5 усл. п.л. Офсет. Формат 60x84/16.

Бумага тип №3. Заказ №     .Тираж 60 экз. Цена свободная

________________________________________________________

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344000, г. Ростов-на-Дону, пл. Гагарина, 1


EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

220В

А

Выпрямитель

П

R

С


 

А также другие работы, которые могут Вас заинтересовать

78513. Назначение и функции операционных систем, их архитектурные типы, классификация и основные семейства 27.5 KB
  ОС – это комплекс управляющих и обрабатывающих программ, который, с одной стороны, выступает как интерфейс между пользователем и аппаратными компонентами вычислительных машин и вычислительных систем, а с другой стороны предназначен для эффективного управления вычислительными процессами
78514. Операционные системы: концепции и механизмы управления процессами и ресурсами 38 KB
  Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти выделение памяти процессам и освобождение памяти при завершении процессов вытеснение процессов из оперативной памяти на диск когда размеры основной памяти не достаточны для размещения в ней всех процессов и возвращение их в оперативную память когда в ней освобождается место а также настройка адресов программы на конкретную область физической памяти. Так как во время трансляции в общем случае не известно в какое место оперативной памяти будет загружена...
78515. Операционные системы: управление файлами и файловые системы 28.5 KB
  Файловая система NTFS. Файл в системе NTFS это не просто линейная последовательность байтов как в системе FT. Отличительными свойствами ФС NTFS являются: Поддержка больших файлов и больших дисков объемом до 264 байт. Структура тома раздела NTFS: Все пространство тома NTFS представляет собой либо файл либо часть файла.
78516. Основные характеристики и особенности организации современных операционных систем 26.5 KB
  Типы ОС: общие специальные и специализированные бортовой автокомпьютер CISCO управление коммутаторами и маршрутизаторами Общая характеристика Windows XP. Windows XP объединяет в себе лучшие качества предыдущих версий Windows: надежность стабильность и управляемость от Windows 2000 простой и понятный интерфейс а также технологию Plug Ply от Windows 98. В Windows XP появился новый более эффективный интерфейс пользователя включающий новые возможности группировки и поиска документов новый внешний вид возможность быстрого...
78517. Основные задачи системного администрирования и их практическая реализация 33 KB
  Важнейшей сферой профессиональной деятельности специалистов в области информационных технологий является управление администрирование функционированием ОС как отдельных компьютеров так и их групп объединенных в вычислительные сети. Системное администрирование в общем случае сводится к решению следующих основных задач: управление и обслуживание пользователей вычислительной системы создание и поддержка учетных записей пользователей управление доступом пользователей к ресурсам; управление и обслуживание ресурсов вычислительной системы ...
78518. Понятие, назначение и основные принципы организации распределенной обработки информации. Архитектура, свойства и характеристики распределенных систем 29.5 KB
  Понятие назначение и основные принципы организации распределенной обработки информации. Под распределенной обработкой информации понимается комплекс операций с информацией проводимый на независимых но связанных между собой ВМ предназначенных для выполнения общих задач. Возможность взаимодействия вычислительных систем при реализации распределенной обработки информации определяют как их способность к совместному использованию данных или к совместной работе с использованием стандартных интерфейсов. Целью распределенной обработки информации...
78519. Концепции и механизмы практической реализации распределенной обработки информации 27 KB
  Концепции и механизмы практической реализации распределенной обработки информации. Одним из исторически первых механизмов реализации распределенной обработки информации является механизм удаленного вызова процедур RPC который поддерживает синхронный режим коммуникаций между двумя прикладными модулями клиентом и сервером. RPC реализует в распределенной среде принципы традиционного структурного программирования. Применение объектно-ориентированного подхода способствует значительному усовершенствованию механизмов организации распределенной...
78520. Эволюция технических средств в обработке информации. Классификация, структурное построение и основные параметры вычислительных машин 28 KB
  Классификация структурное построение и основные параметры вычислительных машин. Предшественниками вычислительных машин были механические и электромеханические счетные устройства. Эта машина во многом была прообразом современных универсальных вычислительных машин. Лебедевым независимо от фон Неймана были сформулированы более детальные и полные принципы построения электронных цифровых вычислительных машин которые были применены при создании первых отечественных разработок ВМ Первый период 19451955.
78521. Основные аппаратные составляющие и перифирийные устройства компьютеров, их назначение, типы, принципы функционирования и характеристики 33 KB
  Процессор является основным вычислительным устройством ВМ в задачу которого входит исполнение находящейся в памяти машины программы. Процессор является основным вычислительным узлом ПК в задачу которого входят исполнение находящейся в памяти программы. сам по себе процессор и остальные элементы контроллеры памяти интерфейсы шины КЭШ память...