11296

Изучение автоколебаний (на примере лампового генератора)

Лабораторная работа

Физика

Изучение автоколебаний на примере лампового генератора Указания содержат краткое описание метода и экспериментальной установки для изучения автоколебаний в простейшем ламповом генераторе с индуктивной обратной связью определение частоты электромагнитны...

Русский

2013-04-05

471 KB

30 чел.

Изучение автоколебаний

(на примере лампового генератора)

Указания содержат краткое описание метода и экспериментальной  установки для изучения автоколебаний в простейшем ламповом генераторе с индуктивной обратной связью, определение частоты электромагнитных колебаний в генераторе  и  индуктивности колебательного контура.

Методические указания предназначены для студентов инженерных специальностей всех форм обучения при выполнении лабораторного практикума по физике (раздел «Электричество»).

Печатается по решению методической комиссии факультета «Нанотехнологии и композиционные материалы»

Научный редактор доцент, к.ф.-м.н. Н.В. Пруцакова

© Издательский центр ДГТУ, 2010

Цель работы:  Изучение автоколебаний в простейшем ламповом генераторе с индуктивной обратной связью, определение частоты электромагнитных колебаний в генераторе  и  индуктивности колебательного контура.

Оборудование: Генератор электромагнитных колебаний, мультиметр, источник питания,  RC - цепочки.

1.Теоретическая часть.

Автоколебания - это незатухающие колебания, возникающие в колебательной системе вследствие наличия положительной обратной связи.

При этом потери энергии восполняются за счет постоянного источника энергии, а этот источник включается самой системой в фазе с основным колебанием (положительная обратная связь), обычно в начале каждого периода колебаний.

 Прежде чем рассмотреть работу генератора незатухающих электрических колебаний, познакомимся с устройством и принципом действия его основных узлов.

Электронная лампа триод состоит из вакуумированного баллона, внутри которого соосно укреплены три металлических электрода (рис.1): катод К (нить накала), анод А (тонкостенный цилиндр) и расположенная между ними управляющая сетка С в виде спирали. Принятое изображение триода на схемах показано на рис.3. При нагревании катода, вследствие прохождения электрического тока, из его поверхности выходят электроны, образуя вокруг катода электронное облако.1 

В пространстве между катодом и анодом создается ускоряющее электрическое поле (анод подключается к положительной клемме анодной батареи, а катод – к отрицательной), под действием которого электроны

1Явление выхода электронов из поверхности нагретых металлов называется термоэлектронной эмиссией.

упорядоченно движутся к аноду.

Положительное сеточное напряжение (потенциал сетки больше потенциала катода) увеличивает силу анодного тока, так как помогает «отсасывать» электронное облако. Отрицательное сеточное напряжение задерживает электроны, сила анодного тока уменьшается и при определенном напряжении равна нулю. Таким образом, триод можно использовать в качестве электронного ключа: «+» на сетке - лампа открыта; «-» - лампа закрыта.

Колебательный контур состоит из параллельно соединенных катушки индуктивности L и конденсатора C0 (рис.2). Если сообщить  конденсатору заряд, то он начнет разряжаться через катушку индуктивности возбуждая в ней ЭДС самоиндукции (εs=-LdI/dt), препятствующую возрастанию тока (dI/dt>0). После разряда конденсатора ток начинает убывать  (dI/dt<0), ЭДС самоиндукции меняет знак (εs >0) и  поддерживает ток в прежнем направлении, что приводит к перезарядке конденсатора. В следующие полпериода процесс повторится в обратном направлении. Из-за потерь энергии (нагревание проводников, переполяризация диэлектрика, излучение электромагнитных волн) в реальном контуре колебания затухающие.

Генератор незатухающих электрических колебаний состоит из колебательного контура, лампового триода, источников питания катода 1 и анода 2. Колебательный контур индуктивно связан с триодом при помощи катушки связи Lсв, что обеспечивает при определенном ее подключении положительную  обратную связь (рис.3).   

При подключении источника питания анода 2 конденсатор контура С0 практически мгновенно заряжается, так как сопротивление соединительных проводов ничтожно мало (время заряда зависит от постоянной =RC). Разряд конденсатора, как было отмечено выше, осуществляется через катушку индуктивности L. Переменный ток разряда создает вокруг катушки индуктивности переменное магнитное поле, которое наводит в катушке связи Lсв ЭДС индукции. В первый полупериод ток разряда в контуре направлен по часовой стрелке, а к управляющей сетке приложен «+» потенциал и лампа открыта. Через контур протекает, дополнительно к току разряда, ток по следующей цепи: «+» источника 2 , катушка индуктивности, анод, катод, «-» источника. Во второй полупериод ток разряда меняет направление на противоположное и на управляющую сетку поступает «-» потенциал. Лампа заперта до тех пор пока не перезарядится конденсатор С0.   

В последующие периоды процессы повторяются. Таким образом, в каждый период колебательный контур получает от источника анодного питания порцию энергии, равную потерянной энергии, и в контуре возникают незатухающие электромагнитные колебания (автоколебания).

Метод  определения частоты электромагнитных колебаний в  генераторе. Для оценки параметров колебательного контура используют RC-цепочку, которую подсоединяют параллельно к конденсатору контура С0 (см. рис.3). С целью минимизации влияния RC-цепочки на частоту электромагнитных колебаний в контуре, ее сопротивление по переменному току должно во много раз превышать сопротивление контура.  

Известно (см. например [1] стр. 369 либо  [5] стр.42), что конденсатор оказывает сопротивление переменному току , зависящее от электроемкости конденсатора С и частоты тока ,  которое определяется по формуле:

                                                             (1)

из формулы (1) частота колебаний в контуре

                                                           (2)

Для определения сопротивления экспериментально определяют напряжение на конденсаторе C  и резисторе R. Так как они включены между собой последовательно, то ток в них одинаков, следовательно

,                             (3)

где Uc – напряжение на конденсаторе;

 UR-   – напряжение на  резисторе.

Из формулы (3)

  .                              (4)

после подстановки из формулы (4) значение сопротивления в формулу (2) получим значение частоты колебаний в генераторе

.                                 (5)

где  R - сопротивление  резистора, C- электроемкость конденсатора измерительной  RC -цепочки.

Для определения индуктивности  катушки колебательного контура используют формулу Томсона

.

Отсюда                                                           (6)

где      - частота колебаний генератора;   C0 – электроемкость конденсатора включенного в колебательный контур.

  1.  Описание экспериментальной установки

Экспериментальная установка (рис. 4) состоит из панели, на которой собран генератор незатухающих электромагнитных колебаний. На панели расположены:

триод 6Н8С;

колебательный контур, состоящий из катушки   индуктивности  L  и   конденсаторов С 01   и  С 02;

катушка обратной связи  Lсв .

цепочки из конденсаторов С3 и С4 и резисторов R1 и R2 (с известными номиналами);

тумблеры для переключения емкостей и резисторов;

мультиметр для измерения напряжения;

источник питания (~ 6,3 В; = 250 В).

  1.  Порядок выполнения лабораторной работы:

    1.   Собрать цепь по схеме (см.рис.4).

2.     Записать в таблицу 1  значение емкостей: С01 , С02 , С3  и С4  

и сопротивлений: R1 и R2 .

3. После проверки собранной схемы преподавателем или лаборантом подключить её к источникам  и .

4. Переключателем П1 подключить к контуру электроемкость С01.

5. Произвести измерения напряжений на резисторе UR и емкости  UС   RC-цепи для следующих комбинаций: R1C3; R1C4; R2C3; R2C4.

Выбор RC-цепочки осуществляется переключатели П2 и П3, а мультиметр подключают при измерении напряжения на резисторе  к клеммам ао, а на конденсаторе – к клеммам во (см. рис.4).

Показания мультиметра занести в таблицу 2.

6. Для каждой комбинации RC-цепочки вычислите частоту колебаний генератора по формуле 5 и её среднее значение. Вычислите среднее значения абсолютной и относительной погрешности.

7. По среднему значениюопределите индуктивность контура, используя формулу 6, и оцените погрешности по формуле:

.

8. Результаты измерений представить в виде:

 

.

9. Переключателем П1 подключить к контуру электроемкость С02 и повторить пункты .

Таблица 1

С01

С02

С3

С4

R1

R2

Ф

Ф

Ф

Ф

Ом

Ом

Таблица 2

С

R C

Ф

-

В

В

Гц

Гц

%

Гн

Гн

%

С01

R1C3

R1C4

R2C3

R2C4

сред

С02

R1C3

R1C4

R2C3

R2C4

сред

Контрольные вопросы

1. Из чего состоит колебательный контур?

2. Как возникают электромагнитные колебания в колебательном контуре?

3. Объяснить принцип работы триода.

4. Что такое автоколебания?

5. Объяснить принцип работы лампового генератора.

6.  Чему равна частота и период автоколебаний?

7.  Вывести расчетные формулы для определения частоты электромагнитных колебаний в  генераторе.

8. Как определяется индуктивность L катушки колебательного контура?

9. При каких условиях измерительная цепочка (RC) не будет оказывать заметное влияние на значение частоты (периода) колебаний в генераторе?

Рекомендуемая литература

  1.  Савельев И.В. Курс общей физики (т.1). М.: Наука, СПб.: Лань, 2006. стр.369-371.
  2.  Трофимова Т.И. Курс физики. М.: Высш. Шк., 2004. стр 231-232.
  3.  Федосеев В.Б. Физика. Ростов н/Д: Феникс, 2009.
  4.  Справочное руководство по физике. Ч.1. Механика, молекулярная физика, электричество, магнетизм: Учеб.-метод. пособие. -Ростов н/Д: Издательский центр ДГТУ, 2008.
  5.  Колебания и волны: Учебное пособие. -Ростов н/Д: Издательский центр ДГТУ, 2009.

Составители: Т.П. Жданова, В.В. Илясов, А.П. Кудря,  В.С. Кунаков

ИЗУЧЕНИЕ  АВТОКОЛЕБАНИЙ

(НА ПРИМЕРЕ ЛАМПОВОГО  ГЕНЕРАТОРА)

Методические указания к лабораторной работе №27 по физике

(Раздел «Электричество»)

Редактор А.А.Литвинова

В печать

Объём 0,7 усл.п.л. Офсет. Формат 60х84/16.

Бумага тип №3. Заказ №       . Тираж          . Цена           

Издательский центр ДГТУ

Адрес университета и полиграфического предприятия:

344010, г.Ростов-на-Дону, пл.Гагарина,1.


EMBED PBrush  

εs

εs

εs

EMBED PBrush  

К

А

C

Рис.3

+

EMBED PBrush  

-

С0

L

Lсв

e

e22

R

С

1

2

в

а

о

К

6

.

3

 

В

~

А

С

Lсв

-250B

 

L

П

1

С01

С02

+250B

П

2

R

1

R2

C

3

C4

П

3

 

U

R

U

C

Рис.4

 

Генератор

RC-цепочки


 

А также другие работы, которые могут Вас заинтересовать

34472. Искусство русского централизованного государства к.15 – н.16вв.: Деятельность В.Д. Ермолина. Формирование архитектурного ансамбля Московского Кремля. Архитектура Московского централизованного государства 54 KB
  Формирование архитектурного ансамбля Московского Кремля. При Иване III идет активная перестройка Кремля. Одним из архитекторов и реконструкторов старого Московского Кремля был Василий Ермолин. Ермолину было поручено возобновление белокаменных стен Московского Кремля.
34473. Живопись Феофана Грека 37.5 KB
  Из произведений Феофана Грека работавшего не покладая рук сохранилась только одна документально подтвержденная работа роспись церкви Спаса Преображения в Новгороде 1378 год. В образах Феофана огромная сила эмоционального воздействия в них звучит трагический пафос. Манера письма Феофана резкая стремительная темпераментная.
34474. Живопись Андрея Рублева 41.5 KB
  Образы Рублева навевают нам воспоминания об утерянной райской жизни об утерянном покое счастье и гармонии со вселенной. В творчестве Рублева отчетливее всего выразились мечты русского народа о самом хорошем человеке об идеальной человеческой красоте. Эпоха Рублева была эпохой возрождения веры в человека в его нравственные силы в его способность к самопожертвованию во имя высоких идеалов.
34475. Живопись Дионисия 41 KB
  Вот в такое время освобожденной обновляемой Руси как нельзя кстати пришелся светлый талант Дионисия его умение создавать праздничный настрой духа его сочные краски. Художественные тенденции последней трети XV начала XVI веков к праздничному декоративизму рафинированной утонченности и каноническому догматизму нашли в лице Дионисия тонкого истолкователя. О творчестве Дионисия в московский период можно судить только по двум произведениям: по иконе Божией Матери Одигитрия и по иконе Апокалипсис.
34476. Русское искусство 17в.: Живопись С. Ушакова. Деятельность оружейной палаты. Фресковая живопись. Парсуна 17.72 KB
  Тяга к наукам интерес в литературе к реальным сюжетам рост светской публицистики нарушение иконографических канонов в живописи сближение культового и гражданского зодчества любовь к декору к полихромии в архитектуре да и во всех изобразительных искусствах все это говорит о быстром процессе обмирщения культуры XVII в. Во главе нового движения провозглашающего те задачи живописи которые вели по сути к разрыву с древнерусской иконописной традицией стоял царский изограф теоретик искусства Симон Ушаков 16261686 взгляды которого...
34477. Строгоновская и годуновская школа иконописи. Особенности выразительного языка 18.35 KB
  Второе строгановская школа условно названная так потому что некоторые иконы выполнялись по заказу именитых людей Строгановых. Собирали иконы шитье и резьбу так что их домашние молельни стали настоящими музеями. Так они особенно ценили иконы совсем небольшого размера однако включающие не меньше отдельных сцен чем многоаршинный иконостас. Иконы этого типа напоминающие миниатюру или драгоценные эмалевые изделия и принято называть строгановскими даже если они не были написаны в мастерских Строгановых.
34478. Русское искусство первой трети 18в. Эпоха реформ Петра 1. Строительство Петербурга. Петровское барокко. Скульптура К.Б. Растрелли 72 KB
  Петровское барокко. Петровское барокко историкорегиональный стиль архитектуры СанктПетербурга сложившийся при жизни его основателя Петра Великого в первой четверти XVIII в. Стиль петровского барокко впитал в себя множество разнородных элементов и потому не является Барокко в полном значении этого слова. Так же петровскому барокко свойственна двуцветная окраска зданий чаще красная с белым и плоскостная трактовка декора.
34479. Русское искусство первой трети 18в.: формирование живописного портрета. Преображенская серия. Творчество живописцев И.Н. Никитина, А.М. Матвева 32.5 KB
  : формирование живописного портрета. Еще в XVII веке возник прообраз реалистического портрета значительно отличающийся от старого условного иконописания. В портрете XVIII столетия проявился исключительный интерес к человеку. Уже в так называемой Преображенской серии портретов которые долго было принято называть в науке портретами шутов так как они исполнены с лиц участвовавших в таком сатирическом конклаве как Всепьянейший сумасбродный собор всешутейшего князьпапы видно напряженное внимание к человеческому лицу к реалиям быта.
34480. Русское искусство сер.18в.:Елизаветинское барокко. Интерьеры. Архитектура. Деятельность Б.Ф. Растрелли. Тенденции рококо и барокко в интерьерах и мебели 31 KB
  :Елизаветинское барокко. Тенденции рококо и барокко в интерьерах и мебели. делится на два этапа: 30е годы мрачное время правления Анны Иоанновны засилья иноземцев и 4050е годы годы елизаветинского правления некоторого смягчения нравов предыдущего времени роста национального самосознания поощрения всего отечественного время сложения стиля русского барокко знаменующего синтез всех видов искусства. Елизаветинское барокко художественный стиль характерный для времени Елизаветы.