11319

Счетчики и их применение

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Занятие 7. Счетчики Учебные методические и воспитательные цели: 1. Изучить принципы построения и разновидности цифровых счетчиков импульсов. 2. Показать методику увязки учебного материала с ранее изученным. 3. Воспитывать умение выделять главное при конспектиро

Русский

2013-04-07

142.5 KB

47 чел.

Занятие 7. Счетчики

Учебные, методические и воспитательные цели:

1. Изучить принципы построения и разновидности цифровых счетчиков

импульсов.

2. Показать методику увязки учебного материала с ранее изученным.

3. Воспитывать умение выделять главное при конспектировании

   учебного материала.

Время: 2 часа.

     План лекции:

п/п

Учебные  вопросы

Время мин.

1.

2.

3.

ВВОДНАЯ ЧАСТЬ

ОСНОВНАЯ ЧАСТЬ

1. Общие сведения и классификация

2. Суммирующие, вычитающие и реверсивные счетчики.

3.Счетчики в режиме деления частоты.

ЗАКЛЮЧИТЕЛЬНАЯ  ЧАСТЬ

5

80

10

45

 

25

5

Материальное обеспечение:

 1. Компьютерный комплекс и демонстрационная программа    

               "Счетчики".

 

Литература:

 1. Калабеков Б.А. Цифровые устройства и микропроцессорные   системы. – М.Горячая линия – Телеком, 2000г., с.131-142.

 


ВВОДНАЯ  ЧАСТЬ

На практике часто требуется определить число перепадов напряжений (включений и выключений) или импульсов, появляющихся на выходе некоторого  устройства. Для этих целей разработаны специальные устройства, которые получили название – счетчики электрических импульсов. В ходе данной лекции будут рассмотрены принципы построения таких устройств и некоторые примеры их применения в технике связи.

ОСНОВНАЯ   ЧАСТЬ

1.Общие сведения и классификация

Счетчиком называют устройство, осуществляющее счет числа поданных на его вход импульсов и фиксирующее это число в двоичном коде. По направлению счета все счетчики делятся на суммирующие, вычитающие и реверсивные. В суммирующих счетчиках с приходом каждого импульса результат счета увеличивается на единицу. У вычитающих счетчиков каждый последующий импульс уменьшает число счета на единицу. Реверсивные счетчики могут производить подсчет импульсов как в режиме суммирования, так и в режиме вычитания.

Обычно счетчики строятся на Т-триггерах. С приходом каждого импульса происходит изменение состояния триггеров.  По состоянию триггеров можно определить число поступивших на вход импульсов.  Число триггеров в счетчике берется таким, чтобы множество их состояний превышало число импульсов, которое должно быть зафиксировано. Такое использование счетчика называют режимом счета. Если число импульсов не ограничено,  то счетчик будет работать в режиме деления их числа на коэффициент счета Ксч равный Ксч =2n,  где n -  число триггеров. Через  каждые 2n импульсов он возвращается в начальное состояние и снова начинает счет.

Рассмотрим особенности  каждого режима  более детально.


2. Суммирующие, вычитающие и реверсивные счетчики

Схема простейшего  суммирующего  счетчика на трех двухступенчатых Т-триггерах приведена на рис.1а, а условное графическое  обозначение -  на рис.1б.

Рис.1

Входом счетчика является информационный  вход  триггера  младшего разряда. Информационные  входы последующих триггеров соединены с прямыми выходами предшествующих. Установочные входы триггеров объединены и образуют R-вход счетчика. Выходами счетчика являются прямые выходы триггеров.

Перед началом счета подается импульс на установочный вход R счетчика, который переводит все триггеры в состояние 0. Поскольку вход счетчика инверсный  динамический,  то  в момент окончания первого импульса триггер Т0 перейдет в состояние 1. Положительный перепад напряжения на его прямом  выходе  не  изменит состояния Т1 и Т2,  поэтому на выходах счетчика будет комбинация 001.  После окончания второго импульса триггер Т0  перейдет в состояние 0,  а отрицательный перепад на его прямом выходе переведет триггер Т1 в состояние 1. На выходах счетчика появится комбинация 010.

Порядок смены состояний счетчика наглядно отражают временные  диаграммы  (рис.2) и таблицы истинности (табл.1).


                                                                                                          Таблица 1

номер

инт.

Q2

Q1

Q0

0

0

0

0

1

0

0

1

2

0

1

0

3

0

1

1

4

1

0

0

5

1

0

1

6

1

1

0

7

1

1

1

8

0

0

0

Из таблицы и рисунка хорошо видно,  что триггер  младшего  разряда меняет свое  состояние с приходом каждого импульса,  а триггер каждого последующего разряда - вдвое реже триггера предыдущего разряда.  Рассмотренный счетчик  осуществляет счет до Ксч=23 - 1= 7.  Для увеличения Ксч необходимо увеличить число триггеров.  Рекомендуется в часы  самоподготовки вычертить таблицу истинности суммирующего счетчика из четырех триггеров и определить коэффициент счета.

Вычитающий счетчик  строится  аналогичным образом.  Отличие будет состоять в том, что информационный вход последующего триггера соединяется с инверсным выходом предыдущего,  а для установки начального состояния будут использованы установочные входы S.  Временные диаграммы и таблица истинности вычитающего счетчика приведены на рис.3 и в табл.2.

              Таблица 2

номер

инт.

Q2

Q1

Q0

0

1

1

1

1

1

1

0

2

1

0

1

3

1

0

0

4

0

1

1

5

0

1

0

6

0

0

1

7

0

0

0

8

1

1

1

Как видно из рисунка,  начальное состояние триггеров - 1. Триггер младшего разряда  также  срабатывает  по  окончанию  каждого импульса. Триггеры Т и Т2 изменяют свои  состояния  при  положительном  перепаде на входе счетчика, т.к. их  входы  соединены с инверсными выходами,  где в этот момент генерируется отрицательный перепад.

Принцип построения реверсивных счетчиков поясняет рис.4.

   

Рис.4

Реверсивный счетчик имеет один информационный вход -Т, два установочных S и R, и два управляющих "+1" и "-1".

Если счетчик используется как суммирующий,  то для установки  начального состояния  используется вход R и на управляющий вход "+1" подается сигнал 1. Тогда информационный вход триггера Тi+1 соединяется с прямым выходом  триггера  Тi.  При  необходимости  использовать тот же счетчик в режиме вычитания для установки начального состояния  используется вход S и подается 1 на вход "-1". Тогда инверсный выход триггера Тi соединяется с информационным входом триггера Тi+1 .

Таким образом, счетчики, независимо от направления счета, с приходом каждого импульса меняют состояния триггеров. По изменению состояний триггеров можно определить число импульсов, поступивших на вход счетчика.

2. Счетчики в режиме деления частоты

Как уже упоминалось в начале лекции, любой из рассмотренных счетчиков может быть использован в режиме деления  частоты,  если  на  его вход будет поступать неограниченная последовательность импульсов.  Для примера рассмотрим временные диаграммы суммирующего счетчика  (рис.2). Если на вход Т подавать импульсы с выхода генератора, а в качестве выхода использовать выход Q0, то оказывается, что частота следования выходных импульсов  в 2 раза меньше входных.  Если в качестве выхода использовать Q1,  то частота выходных импульсов будет в  4  раза  меньше входных, а  если Q2 - то 8 раз.  Таким образом,  увеличивая количество триггеров, можно получить коэффициенты деления 16, 32, 64 и т.д.  Но  на практике чаще  требуется получить коэффициент деления кратный 10.  Для этого счетчик должен содержать не менее четырех триггеров.  Опишем логику работы такого счетчика таблицей  истинности (табл.3).              Таблица3

Номер

имп.

Q3

Q2

Q1

Q0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Как видно  из  таблицы,  обычный  суммирующий  счетчик на четырех триггерах может обеспечить коэффициент деления 24=16,  если в качестве выхода использовать вывод Q3.  Для обеспечения коэффициента деления 10 необходимо обеспечить переход триггеров в исходное состояние, с приходом десятого импульса.  Это достигается введением логических схем, обнаруживающих десятую кодовую комбинацию и выполнением перехода в нулевое состояние. Один  из  возможных  вариантов  такой схемы приведен на рис.5.  

  

Рис.5

Особенность работы данной схемы состоит в том,  что после прихода десятого импульса состояние триггеров счетчика будет 1010.  Прямые выходы триггеров Т3 и Т1 соединены с входами схемы И,  на выходе которой в этот момент появится сигнал 1.  Этот сигнал подается на установочные входы R и переводит все триггеры в нулевое состояние.  Поэтому, если в качестве выхода  использовать  вывод Q3,то частота следования выходных импульсов здесь будет в 10 раз меньше,  чем на входе.  Если  выход  Q3 соединить со входом Т аналогичного счетчика, то общий коэффициент деления составит уже 100.  Таким образом,  последовательным  соединением двоичных и десятичных счетчиков можно обеспечить заданный коэффициент деления импульсов.

ЗАКЛЮЧИТЕЛЬНАЯ  ЧАСТЬ

Счетчики импульсов находят широкое применение в схемах формирования сетки опорных частот современных возбудителей и гетеродинов приемников. Кроме того, они применяются в различных цифровых устройствах для преобразования кодов,  в распределителях импульсов,  таймерах и др.

Задание на самостоятельную работу

1. Изучить материал по учебнику [1]  страницы 131-142.

2. Вычертить, временны диаграммы, поясняющие работу счетчика – делителя на 10.

                       Доцент кафедры №9                          Б.Степанов

Рецензент      полковник              Г.Журбин                  

T

CT2

1

R

2

3

б)

T

T

TT0

Q

R

T

TT1

Q

R

T

TT2

Q

R

Q0

Q1

Q2

R

a)

T

0

Q0

Q1

0

0

t

t

t

t

0

Q2

Рис.2

T

0

Q0

Q1

0

0

t

t

t

t

0

Q2

Рис.3

Qi

&

1

&

"+1"

"-1"

T

Ti+1

Q

S

Cл

Сп

Тi

Q2

R

Qi+1

S

R

T

T3

Q

R

T

T

T0

Q

R

T

T1

Q

R

T

T2

Q

R

Q0

Q1

Q2

R

&


 

А также другие работы, которые могут Вас заинтересовать

19513. Статическое идеальное звено 6.88 MB
  Статическое идеальное звено. Идеальное статическое звено: Усилительное или пропорциональное Эго уравнение и в статике и в динамике имеет вид: Таким образом сигнал усилительного звена в любой момент времени равен входному сигналу умноженного на постоянный коэффиц...
19514. Идеальное интегрирующие звено 1.27 MB
  Идеальное интегрирующие звено. Уравнение такого звена: Выходной сигнал интегрирующего звена равного интегралу по времени выходного сигнала умноженное на постоянный коэффициент. Пример интегрирующего звеньев является различные счетчики суммирующие...
19515. Параллельное соединение звеньев 1.83 MB
  Параллельное соединение звеньев При параллельном соединении звеньев входа сигналы всех звеньев одинаков и равны входу системы. Общий вид равен сумме выходных сигналов всех звеньев. эквивалентная периодическая функция Таким образом передаточная...
19516. Идеальное дифференцирующее звено 2.23 MB
  Идеальное дифференцирующее звено. 1. Идеальное дифференцирующие звено То есть координата пропорциональна скорости изменения входной. Параметр который называется постоянной дифференцирования измеряется в секундах Отсюда найдем передаточную функцию и поле со...
19517. Правило преобразования структурных схем 8.16 MB
  Правило преобразования структурных схем. Предположим есть объект В исходном схеме имеется 1 входной сигнал х и 2вых сигнала и . Необходимо перенести узел через звено. Простой перенос приведет к схеме показанный рис б. очевидно что эта схема не соответствует исходно
19518. Понятие устойчивости 2.43 MB
  Понятие устойчивости. Устойчивость это свойство системы возвращается в исходный установившийся режим после выхода из него в результате какоголибо внешнего воздействия. Различают три типа систем. 1 устойчивый эта система в которой будущей выведен из состояни...
19519. Критерий устойчивости Раусса–Гурвица 91.5 KB
  Критерий устойчивости РауссаГурвица. Пусть система описывается дифференциальным уравнением Nго порядка нумерация коэффициентов здесь проводится в обратном порядке по сравнению со стандартным дифференциальным уравнением Составим из коэффициентов этого уравнени...
19520. Критерий Михайлова 2.27 MB
  Критерий Михайлова Как и в случае алгоритм критерия критерий Михайлова применяется тогда когда известно дифференциальное уравнение . Для анализа устойчивости системы предлагается использовать характеристический комплекс б который определяется из характеристическо...
19521. Амплитудно фазовый критерий Найквиста 3.26 MB
  Амплитудно фазовый критерий Найквиста. АФ критерий Найквиста позволяет оценить устойчивость системы с отрицательной обратной связью то есть замкнутый по найденной экспериментальной или из передаточной функции АФХ разомкнутой системы. Рассмотрим замкнутый контур....