11349

ДИАГРАММА ЖЕЛЕЗО-УГЛЕРОД (ЦЕМЕНТИТ). Компоненты, фазы и структурные составляющие железоуглеродистых сплавов

Лекция

Производство и промышленные технологии

Лекция 3 ДИАГРАММА ЖЕЛЕЗОУГЛЕРОД ЦЕМЕНТИТ. Компоненты фазы и структурные составляющие железоуглеродистых сплавов. Железоуглеродистые сплавы – стали и чугуны являются основными наиболее распространенными среди материалов используемых в различных отраслях

Русский

2013-04-07

95.23 KB

56 чел.

Лекция 3

ДИАГРАММА ЖЕЛЕЗО-УГЛЕРОД  (ЦЕМЕНТИТ). Компоненты, фазы и структурные
составляющие железоуглеродистых сплавов.

Железоуглеродистые сплавы – стали и чугуны являются основными, наиболее распространенными среди материалов, используемых в различных отраслях промышленности. Эти сплавы описываются диаграммой состояния железо-углерод (цементит) (рис. 1)

Основными компонентами диаграммы являются железо и углерод. Температура плавления железа 1539 0С. В твердом состоянии может находиться в двух модификациях α  (ОЦК-решетка) и γ  (ГЦК-решетка). Модификация Feα  существует при температурах до 9110 и от 13920 до 15390С. Важной особенностью Feα  является его ферромагнетизм ниже температуры 7680С, (точка Кюри).

Модификация Feγ существует в интервале температур от 9110 до 13920С.

Железо с углеродом образует растворы внедрения. Растворимость углерода в железе зависит от температуры и от того, в какой кристаллической форме существует железо.

Твердый раствор углерода в α-Fe  называется ферритом; в γ-Fe- аустенитом.

Содержание углерода в диаграмме Fe-C ограничивается 6,67%, т.к. при этой концентрации образуется химическое соединение Fe3C цементит.

Так как на практике применяют железоуглеродистые сплавы с содержанием углерода не более 5%, то цементит является вторым компонентом рассматриваемой диаграммы.

Цементит имеет сложную кристаллическую  решетку. Температура плавления цементита около 12500С. Полиморфных превращений не испытывает, но при низких температурах слабо ферромагнитен.  Цементит имеет высокую твердость (НВ-8000МПа), но практически нулевую пластичность. Цементит соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение для получения высокоуглеродистых сплавов – серых чугунов.

Ж+Ф

А

Ж

А+Ц+Л

А+Ф

115°

1147°

1153°

F

D

K

L

C

E

Ц+Л

Ф

Ф+ЦIII

Ф+П

А+ЦII

Ц+П

Ж+ЦI

Ц+Л

S

M

G

П+Ц+Л

Л

Ж+А

t,°C

1539

1500

1400

1300

1200

1100

1000

911

900

800

700

600

Q  0,02        0,8  1                      2 2,14               3                      4      4,3            5                       6            6,67  С,%

            10             20             30             40             50             60             70             80             90           Fe3С,%

Рис. 1 Диаграмма «Железо-углерод (цементит)»

D'

F'

К'

Е'

B

Ф

Ф+А

J

H

P

738°

727°

C

Графит − углерод в свободном состоянии, имеет гексагональную кристаллическую решетку, низкую прочность, мягок, электропроводен, химически стоек.

В сплавах Fe-C существуют две высокоуглеродистые фазы: метастабильная – цементит и стабильная – графит. Поэтому различают две диаграммы состояния  - метастабильную железо-цементит и стабильную железо-графит.

Координаты характерных точек диаграммы «железо-цементит» приведены в таблице  1. 

Таблица 1.

Критические точки диаграммы «Железо-углерод»

Обозначение точки

Т0С

С,%

А

1539

0

Н

1499

0.1

I

1499

0.16

B

1499

0.51

N

1392

0

D

1250

6.67

E

1147

2.14

C

1147

4.3

F

1447

6.67

G

911

0

P

727

0.02

S

727

0.8

K

727

6.67

Q

600

0.01

L

600

6.67

Точка А определяет температуру плавления чистого железа, точка D – цементита. Точки N и G соответствуют температурам полиморфных превращений железа. Точки Н и P характеризуют  предельную концентрацию углерода  соответственно   в высокотемпературном и низкотемпературном феррите. Точка Е определяет наибольшую концентрацию углерода в аустените.

Превращения в сплавах системы FeFe3C происходят как при затвердевании жидкой фазы, так и в твердом состоянии.

Первичная кристаллизация идет в интервале температур, определяемых линиями ABCD (ликвидус) и AHIECF (солидус).

Вторичная кристаллизация вызвана превращением железа одной модификации в другую и переменной растворимостью углерода в аустените и феррите, при понижении температуры растворимость уменьшается. Избыток углерода из твердых растворов выделяется в виде цементита. Линии ES и PQ характеризуют изменение концентрации углерода в аустените (ES) и феррите (PQ).

В системе  FeFe3C происходят три изотермических превращения:

- t – 14990 С, линия HIB – перитектическое превращение.

ФН + ЖВ → АI;

- t – 11470 С, линия ECF – эвтектическое превращение

ЖС → АЕ + Ц;

- t – 7270 С, линия PSK – эвтектоидное превращение

АS → ФР + Ц → П.

Эвтектическая смесь аустенита и цементита называется ледебуритом, эвтектоидная смесь феррита и цементита называется перлитом.

Следовательно в системе Fe-Fe3C существуют следующие фазы:

- жидкость- жидкий раствор углерода в железе, существующая выше линии ликвидус, обозначается буквой Ж;

-цементит- Fe3C, обозначается буквой Ц;

-феррит- твердый раствор углерода в Feα, обозначается буквой Ф, расположен левее линии AHN и GPQ;

-аустенит- твердый раствор углерода в Feγ,  обозначается буквой А, область расположения NIESG.

Структурными составляющими данной системы являются: феррит (Ф), аустенит (А), цементит (Ц), перлит (П), ледебурит (Л).

Феррит мягкая, пластичная фаза (σв=300МПа, δ-40%, ψ-70%, HB-800-1000 МПа). Различают низкотемпературный и высокотемпературный феррит. Предельная концентрация углерода в низкотемпературном феррите 0,02 % (P), в высокотемпературном-0,1 % (H). Феррит магнитен до 768 0С ( линия МО).

Аустенитпластичен, (δ - 40-50%, НВ = 1000 МПа), не магнитен. Предельная концентрация углерода достигает 2,14% (Е).

Перлитчаще всего имеет пластичное строение и является прочной структурной составляющей (σв-800-900МПа, δ<16%,
ψ-70%,
HB-1800-2200МПа).

Ледебуритпри охлаждении до температур ниже линии SK, аустенит, входящий в него превращается в перлит. Ледебурит ниже линии SK (727 0С) представляет собой смесь перлита и цементита. Ледебурит имеет высокую твердость HB>6000 МПа, но хрупок.

Железоуглеродистые сплавы подразделяют на стали и чугуны.

Стали – сплавы железа с углеродом, содержащие до 2,14% С.

Чугуны – сплавы железа с углеродом, содержащие от 2,14 до 6,67 % С.


 

А также другие работы, которые могут Вас заинтересовать

37884. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости 983 KB
  12 Лабораторная работа № 130 Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости 1. Изучение диффузии как одного из явлений переноса в газах. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения воды.1 где – проекция вектора градиента концентрации молекул переносимого вещества на указанную ось х D – коэффициент диффузии.
37885. Изучение наглядно-действенного мышления у дошкольников 223.5 KB
  Мышление – это психический процесс обобщенного и опосредованного отражения устойчивых, закономерных свойств и отношений действительности, существенных для решения познавательных проблем, схематической ориентации в конкретных ситуациях.
37886. УСТАНОВКА ОБЕРБЕКА 300.5 KB
  ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Согласно основному закону динамики вращательного движения угловое ускорение твёрдого тела способного вращаться вокруг неподвижной оси определяется суммой проекций моментов всех внешних сил на ось вращения: 1 где Mi – проекция момента i той силы действующей на тело на ось вращения ε – угловое ускорение I – момент инерции тела относительно оси вращения. Прибор носит название установка или крест Обербека. Ось закреплена в подшипниках так что вся система может вращаться вокруг горизонтальной оси....
37887. ИСПЫТАНИЕ ВЫТЯЖНОЙ ВЕНТИЛЯЦИОННОЙ 223.16 KB
  атериальное обеспечение. Вытяжной вентиляционный шкаф с воздуховодом, оборудованный шторкой для изменения площади рабочего проёма; анемометр крыльчатый АСО-3, секундомер; комбинированный приёмник воздушного давления, микроманометр многопредельный с наклонной трубкой ММН-240(5)-1,0, шумомер ШУМ-1М.
37888. ЛАБОРАТОРНАЯ РАБОТА № 110. 297.5 KB
  4 ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ НА ОСИ КОЛЬЦЕВОЙ КАТУШКИ Методическое указание к выполнению лабораторной работы по курсу общей физики для студентов инженерно технических специальностей Калининград 2006 1. Цель работы: Исследование магнитного поля на оси катушки: измерить магнитную индукцию в различных точках на оси кольцевой катушки; построить график изменения магнитной индукции вдоль оси катушки; проверить результаты измерения расчётом. Для кольцевой катушки содержащей витков:...
37889. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ДИПОЛЬНОЙ МОДЕЛИ СЕРДЦА 73 KB
  2 ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ДИПОЛЬНОЙ МОДЕЛИ СЕРДЦА ЛИТЕРАТУРА: Ремизов А. построение кардиограммы дипольной модели сердца. Будем считать что плечо диполя сердца через равные промежутки времени t в условных единицах последовательно принимает значения l приведенные в таблице. Эти графики будут соответствовать кардиограммам I II III отведений на треугольнике Эйнтховена нашей дипольной модели сердца.
37890. Включение фотоэлектрок Олориметра и порядок работы 225.5 KB
  Поставить выключатель гальванометра в положение. Оптическим клином грубой наводки поставить стрелку гальванометра на “0â€. Оптическим клином грубой и точной наводки установить стрелку гальванометра на “0†точно.
37891. Определение отношения теплоемкостей газа при постоянном давлении и объеме 1.41 MB
  11 Лабораторная работа № 116 Определение отношения теплоемкостей газа при постоянном давлении и объеме Цель работы Изучение закономерностей изменения параметров состояния газа в различных процессах и определение отношения теплоемкостей воздуха при постоянном давлении и объеме. Удельная и молярная теплоемкости газов зависят как от природы газа так и от условий его нагревания.3 Изменение внутренней энергии идеального газа однозначно определяется его начальным и конечным состояниями тогда как совершаемая газом работа зависит от характера...
37892. Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом 1.34 MB
  12 Лабораторная работа № 119 Определение отношения теплоемкостей газа при постоянном давлении и постоянном объеме резонансным методом 1. Теплоемкость и коэффициент Пуассона газа Для характеристики тепловых свойств вещества наряду с другими величинами используют молярную и удельную теплоемкости. Теплоемкость газа зависит от природы его молекул и от того как происходит его нагревание.1 Внутренняя энергия идеального газа – это энергия теплового движения его молекул и атомов в молекулах.