11351
Классификация и свойства чугунов
Лекция
Производство и промышленные технологии
Лекция 5 Классификация и свойства чугунов Чугунами называются железоуглеродистые сплавы содержащие более 214 углерода и согласно диаграммы железоцементит затвердевают с образованием эвтектики. Благодаря хорошим литейным свойствам достаточной прочности износо...
Русский
2013-04-07
137.79 KB
37 чел.
Лекция 5
Классификация и свойства чугунов
Чугунами называются железоуглеродистые сплавы, содержащие более 2,14 % углерода и согласно диаграммы железо-цементит затвердевают с образованием эвтектики. Благодаря хорошим литейным свойствам, достаточной прочности, износостойкости при относительно низкой стоимости чугуны получили широкое распространение в машиностроении. Их применяют при получении отливок сложной формы при отсутствии высоких требований к размерам деталей и их массе.
Выплавляют чугун в доменных печах и получают передельные (белые), специальные (ферросплавы) и литейные (серые) чугуны. В зависимости от того, в какой форме находится углерод в сплавах, различают белые, серые, высокопрочные и ковкие чугуны. Присутствие элементов в различных чугунах изменяется в следующих пределах: 2,2-4,0 % углерода; 1,0-3,0 % Si; 0,2-1,5 % Мn; 0,02-0,2 % S; 0,02-0,3 % Р.
Если весь углерод, входящий в состав чугуна, находится в связанном виде как химическое соединение Fe3 С, то такой чугун называется белым. Его излом светлый, с металлическим блеском, отчего и происходит название. По структуре белые чугуны подразделяются на доэвтектические, эвтектические и заэвтектические. Любой белый чугун содержит эвтектику ледебурит, которая в момент образования состоит из аустенита и цементита, а при охлаждении ниже 7270С из перлита и цементита (рис. 1).
Большое количество цементита в структуре придает белым чугунам высокую твердость 4500-5500 НВ, износостойкость, хрупкость. Из-за очень низкой пластичности и плохой обрабатываемости резанием белые чугуны ограниченно применяется в машиностроении.
Для получения белого чугуна необходимо быстрое охлаждение отливки при минимальном количестве кремния и присутствие отбеливающих элементов марганца или хрома. При таких условиях зарождение кристаллов графита становится невозможным и весь углерод идет на образование цементита.
Ограниченное применение имеют отбеленные чугуны отливки, у которых сердцевина имеет структуру серого чугуна, а на поверхности имеется слой со структурой белого чугуна. Так можно изготовить валки прокатных станов, тормозные колодки, шары мельниц для размола горных пород, лемех плугов и др. детали, на поверхности которых требуется высокая износостойкость.
Придать обрабатываемость белым чугунам можно только после того, как цементит распадается на графит и феррит. Графит обеспечивает пониженную твердость, хорошую обрабатываемость резанием, высокие антифрикционные свойства вследствие низкого коэффициента трения. Но включения графита снижают прочность и пластичность сплава. Серые, высокопрочные и ковкие чугуны различаются условиями образования графитных включений.
Рис. 1. Микроструктура белого эвтектического (4,3 % углерода) чугуна
Серыми называются чугуны с пластинчатой формой графита. Его излом темно-серый, без блеска, отчего и происходит название. Серый чугун-сплав сложного состава, содержащий основные элементы: Fe, C, Si и постоянные примеси: Mn, P, S. Содержание этих элементов находится в следующих пределах: 2,2-3,7 % углерода; 1,0-3,0 % Si; 0,2-1,1 % Мn; 0,02-0,15 % S; 0,02-0,3 % Р.
Углерод оказывает влияние на качество чугуна. Чем выше концентрация углерода, тем больше выделений графита и ниже механические свойства чугуна, но пониженное содержание углерода приводит к ухудшению литейных свойств. Поэтому для толстостенных отливок применяют чугун с более низким содержанием углерода, а для тонкостенных с более высоким. Максимальное содержание углерода в серых чугунах ограничивается доэвтектической концентрацией.
Кремний обладает сильным графитизирующим действием способствует выделению графита при кристаллизации чугуна и разложению выделяющегося цементита. Марганец затрудняет графитизацию чугуна, но улучшает механические свойства. Сера это вредная примесь. Она ухудшает механические и литейные свойства чугуна, понижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин.
Фосфор в небольшом количестве (до 0,3 %) растворяется в феррите. При большем содержании он образует вместе с железом и углеродом фосфидную эвтектику, которая плавится при температуре 950 0С, что увеличивает жидкотекучесть чугуна, но при этом повышается твердость и хрупкость. Так в чугунах для художественного литья используется чугун с 1 % фосфора.
На структуру и свойства чугуна сильно влияют технологические факторы, особенно скорость охлаждения, которая зависит от толщины стенки отливки. Чем больше толщина стенки, тем медленнее охлаждается отливка и полнее проходит процесс графитизации. С увеличением скорости охлаждения создаются условия для первичной кристаллизации: из жидкой фазы выделяется цементит, а графит образуется вследствие его распада при дальнейшем охлаждении. Иногда ледебурит не разлагается, а остается в структуре чугуна.
Механические свойства серого чугуна зависят от свойств металлической основы, но главным образом, от количества, формы и размеров графитовых включений. Графит играет роль надрезов в металлической основе чугуна. Поэтому независимо от структуры основы относительное удлинение при растяжении серого чугуна не превышает 0,5 %. Чем меньше и разобщеннее графитные включения, тем меньше их отрицательное влияние на прочность. Сопротивление разрыву, твердость и износостойкость чугунов растут с увеличением количества перлита в структуре. Значительно слабее влияние графита при изгибе и особенно при сжатии.
Прочность при сжатии и твердость определяются в основном структурой металлической основы чугунов. Они близки к свойствам стали с той же структурой и составом, что и металлическая основа чугуна. Серый чугун обладает способностью гасить механические колебания, не чувствителен к надрезам, хорошо обрабатывается резанием. Из него изготавливают детали разного назначения от нескольких граммов (поршневые кольца двигателей) до отливок в десятки тонн (станины станков). Выбор марки чугуна для конкретных условий работы определяется совокупностью технологических и механических свойств. Детали из серого чугуна изготавливают литьем с последующей обработкой резанием.
Маркировка серых чугунов определяется ГОСТ 1412-85 и состоит из букв СЧ и числа, показывающего значение предела прочности при растяжении в кгс/мм2, например, СЧ30.
Ферритные чугуны СЧ10, СЧ15 предназначены для слабо- и средненагруженных деталей: крышки, фланцы, корпуса редукторов, тормозные барабаны и т.д. Феррито-перлитные серые чугуны СЧ20, СЧ25 применяют для деталей, работающих при повышенных нагрузках: блоки цилиндров, барабаны сцепления, зубчатые колеса, станины станков и т.д. (рис. 2).
Перлитные серые модифицированные чугуны СЧ30, СЧ35 имеют более высокие механические свойства из-за мелких графитных включений. Измельчение графита достигается путем модифицирования жидкого чугуна ферросилицием или силикокальцием в количестве 0,5 % от массы чугуна. Модифицированные чугуны обладают более высокими свойствами и хорошей герметичностью. Их применяют для корпусов насосов, компрессоров, гидроприводов, тормозной пневматики и др.
Для деталей, работающих при повышенных температурах, применяют легированные серые чугуны: жаростойкие дополнительно содержат хром и алюминий, жаропрочные хром, никель и молибден. Отливки из серого чугуна подвергают термической обработке для снятия внутренних напряжений и стабилизации размеров. Такой нагрев составляет ~560 0С.
Рис. 2. Микроструктура феррито-перлитного серого чугуна
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают путем модифицирования в жидкий чугун добавляют магний в количестве 0,02-0,08 %. Магний вводится в ковш перед заливкой в формы не в чистом виде, а в виде лигатуры сплава магния с никелем. Магний является поверхностно-активным элементом: в расплаве атомы магния образуют препятствия на поверхности растущего кристалла графита, увеличивая его поверхностную энергию. Поэтому становится энергетически выгодным образование кристалла с наименьшим отношением поверхности к объему, т.е. шару.
По химическому составу высокопрочные чугуны не отличаются от серых, но шаровидный графит является менее сильным концентратором напряжений, чем пластинчатый, поэтому прочность и пластичность этих чугунов выше, чем серых.
В соответствии с ГОСТ 7293-85 марка высокопрочного чугуна состоит из букв ВЧ и числа, показывающего значение предела прочности при растяжении в кгс/мм2, например, ВЧ50.
По структуре металлической основы высокопрочные чугуны могут быть ферритными или перлитными. Ферритный чугун состоит в основном из феррита и шаровидного графита; допускается до 2 % перлита. Структура перлитного чугуна состоит из сорбитообразного или пластинчатого перлита и шаровидного графита, допускается до 20 % феррита (рис. 3).
Рис. 3. Микроструктура феррито-перлитного высокопрочного чугуна
Высокопрочные чугуны способны заменять сталь во многих изделиях и конструкциях. Они могут работать при высоких циклических нагрузках и в условиях износа. Из них изготавливают оборудование прокатных станов, кузнечно-прессовое оборудование, корпуса паровых турбин, коленчатые валы в тракторо- и автомобилестроении, поршни двигателей и др.
В некоторых случаях для улучшения механических свойств чугунов применяют термическую обработку: закалку и отпуск - для повышения прочности и отжиг для увеличения пластичности.
Ковкими называются чугуны, в которых графит имеет хлопьевидную форму. Их получают отжигом белых доэвтектических чугунов. Графит в ковких чугунах формируется при термической обработке и в такой форме он меньше снижает механические свойства металлической основы. Отливки из белых чугунов должны быть тонкостенными, толщиной не более 50 мм, иначе в сердцевине при кристаллизации выделяется пластинчатый графит и чугун становится непригодным для отжига. По этой причине в ковких чугунах находится пониженное содержание углерода и кремния: 2,4-2,9 % углерода; 1,0-1,6 % Si; 0,2-1,0 % Мn; до 0,2 % S; до 0,18 % Р.
Рис. 4. Схема режима отжига белого чугуна с получением ферритного (1) и перлитного (2) ковкого чугуна
Отжиг на ферритный чугун проводится по режиму 1 (рис. 4), что обеспечивает графитизацию в две стадии. Первая стадия графитизации при температуре 950 0С состоит в распаде цементита, находящегося в ледебурите. Это приводит к образованию структуры аустенита и включений углерода отжига. Вторая стадия графитизации протекает при медленном охлаждении в эвтектоидном интервале температур от 720-740 0С. В процессе этой выдержки распадается цементит перлита. В результате такого отжига продолжительностью 60-80 часов формируется структура, состоящая из феррита и углерода отжига (рис. 5).
Перлитный ковкий чугун получают по режиму 2 (рис. 4). Продолжительность графитизации при температуре 1000 0С увеличивается, после чего отливки непрерывно охлаждают до комнатной температуры. Графитизации цементита, входящего в состав перлита, не происходит, поэтому чугун приобретает структуру перлита с включениями углерода отжига.
Рис. 5. Микроструктура ферритного ковкого чугуна
В отличие от пластинчатого графита в сером чугуне хлопьевидные включения меньше снижают механические свойства металлической основы, что делает ковкий чугун прочнее серого, хотя уступает высокопрочному чугуну.
Название «ковкий» условное, деформировать ковкие чугуны нельзя. В обозначении ковкого чугуна первая цифра показывает значение предела прочности при растяжении в кгс/мм2, вторая относительное удлинение в %, например, КЧ45-7.
Ковкие чугуны широко применяются в сельскохозяйственном, автомобильном, текстильном машиностроении. Из них изготавливаю детали высокой прочности, работающих в условиях износа при ударных и знакопеременных нагрузках. Хорошие литейные свойства исходного белого чугуна позволяют получать отливки сложной формы и малой толщины. Это крышки картеров, редукторов, ступицы, муфты, втулки, звенья и ролики цепей конвейера.
Недостатком ковких чугунов является их более высокая стоимость из-за продолжительного отжига.
А также другие работы, которые могут Вас заинтересовать | |||
16409. | Финансовые функции Excel. Пример расчета эффективности капиталовложений с помощью функции ПЗ | 144.5 KB | |
Финансовые функции Excel. Пример расчета эффективности капиталовложений с помощью функции ПЗ. Рассмотрим следующую задачу. Вас просят дать в долг 10000 руб. и обещают возвращать по 2000руб. в течении 6 лет. Будет ли выгодна эта сделка при годовой ставке 7 В приведенно на рисунке... | |||
16410. | Практическое задание: использование функции вертикального просмотра (ВПР) | 65.5 KB | |
Практическое задание: использование функции вертикального просмотра ВПР Функция ВПР ищет значение в крайнем левом столбце справочной таблицы и возвращает значение в той же строке из указанного столбца таблицы. Синтаксическая форма ВПРискомое_значение;таблица;... | |||
16411. | ФУНКЦИИ EXCEL. ВВОД ФУНКЦИЙ В РАБОЧЕМ ЛИСТЕ EXCEL | 133.75 KB | |
Лекция 1. ФУНКЦИИ EXCEL Функции Excel это специальные заранее созданные формулы которые позволяют легко и быстро выполнять сложные вычисления. Их можно сравнить со специальными клавишами на калькуляторах предназначенных для вычисления квадратных корней логарифмов и про... | |||
16412. | Емпіричне дослідження гендерних особливостей міжособистісної взаємодії у ранній юності | 403.5 KB | |
Проблема стосунків жінки і чоловіка в суспільстві прадавня. Сьогодні вона набула особливої гостроти оскільки в світі активізується боротьба за ствердження демократичних норм і принципів. У цьому контексті гендерне партнерство (рівні відносини статей), гендерна рівність набувають все більшої актуальності. | |||
16413. | Национальные проекты в России, как одна из форм государственного управления. Национальный проект «Демография» | 1.23 MB | |
Причины депопуляции в ошибках конкретных государственных правителей — Депопуляция процесс объективный, исторически заданный. Для России низкая рождаемость, ведущая к депопуляции, будет иметь катастрофические последствия. — Депопуляция нежелательна, но не катастрофична; противостоять ей можно. | |||
16414. | Планирование, как функция управления | 113.5 KB | |
Планирование как функция управления Понятие функции управления. Функция планирование. Процесс стратегического планирования. I. Суть любого управления это достижение организацией целей при наиболее оптимальном использовании ресурсов. ... | |||
16415. | Функция организация | 166 KB | |
Функция организация Сущность функции организация Построение организации Делегирование полномочий I. Организация как функция управления нацелена на то чтобы претворить намеченные планы и решения в жизнь. Ранее мы рассматривал... | |||
16416. | Функция мотивация | 108 KB | |
Функция мотивация Сущность функции мотивации Теории мотивации I. Руководителю чтобы эффективно двигаться к намеченной цели необходимо координировать работу и заставить персонал выполнять ее. Функция мотивации состоит в побуждении перс | |||
16417. | Функция контроль | 107.5 KB | |
Функция контроль Цели задачи и содержание функции контроль Процесс контроля I. Контроль процесс обеспечения достижения организацией своих целей постоянное сравнение того что есть с тем что должно быть. Функция контроль состоит в наблю... | |||