11358

Медь, ее маркировка. Латуни (состав, свойства, маркировка и применение). Бронзы (состав, свойства маркировка и применение)

Лекция

Производство и промышленные технологии

Лекция 12 Медь ее маркировка. Латуни состав свойства маркировка и применение. Бронзы состав свойства маркировка и применение. Медь действительно цветной металл: в зависимости от чистоты и состояния поверхности цвет изменяется от розового до красного. Её порядк...

Русский

2013-04-07

104.39 KB

106 чел.

Лекция 12

Медь, ее маркировка. Латуни (состав, свойства, маркировка и применение). Бронзы (состав, свойства маркировка и применение).

Медь действительно цветной металл: в зависимости от чистоты и состояния поверхности цвет изменяется от розового до красного. Её порядковый номер 29, имеет кристаллическую решетку ГЦК с периодом решетки 0,3608 нм. Медь плавится при температуре 10830С, не имеет полиморфных превращений, её удельный вес составляет 8,94 г/см3. Медь обладает высокой электропроводностью и теплопроводностью, имеет высокие технологические свойства: хорошо паяется, сваривается, легко обрабатывается давлением. В отожженном состоянии предел прочности меди составляет 200-250МПа при относительном удлинении 40-5-%. По ГОСТ 859-78 производится 11 марок меди в зависимости от содержания примесей. Например, М00 содержит 99,99% Cu, МО – 99,97% Cu, М2-99,7% Cu т.д. Благодаря высокой электропроводности медь нашла широкое применение в электротехнике. Из меди изготавливают шины, ленты, кабели, обмотки электродвигателей и др. Примеси изменяют свойства меди. Понижают электропроводность примеси, которые образуют с медью твёрдые растворы: фосфор (Р), мышьяк (As), алюминий (Al), олово (Sn).

Высокая теплопроводность меди делает её пригодной для водоохлаждаемых тиглей, кристаллизаторов, поддонов и изложниц для отливки титана (Ti) и др.

На механические свойства меди примеси влияют незначительно, в большей мере они зависят от состояния (литое или деформированное). Для повышения прочности медь легируют цинком (Zn), алюминием (Al), оловом (Sn), никелем (Ni), железом (Fe) или подвергают холодной пластической деформации. В результате холодной пластической медь наклёпывается и её временное сопротивление разрыву может достигать 400-450 МПа, при одновременном снижении пластичности и электропроводности на 2-4%.

Восстановить пластичность меди можно рекристаллизационным отжигом при температуре 500-6000С.

Медные сплавы по технологическим свойствам подразделяются на деформируемые при получении листов, полос, профилей, проволоки и литейные при получении отливок в песчаные или металлические формы. По способности упрочняться в результате нагрева медные сплавы делятся на упрочняемые и не упрочняемые термической обработкой. По химическому составу более широко известно деление медных сплавов на латуни и бронзы.

В латунях главным легирующим элементом является цинк (Zn). Латуни получили широкое распространение благодаря сочетанию высоких механических и технологических свойств. Структура и свойства латуней определяется диаграммой состояния Cu-Zn, рис.15.3.

Содержание цинка в кристаллической решетке может достигать 39%. Латуни состоящие из меди и цинка называют простыми. Они могут быть однородными (до 39% цинка) и двухфазными (более 39% цинка). Однофазные латуни имеют высокую пластичность, т.к. состоят из однофазного α-твёрдого раствора. Двухфазные латуни при наличии β-фазы имеют более высокую прочность, но пластичность при этом снижается, рис.1.

Простые латуни маркируются буквой «Л» и цифрой, показывающей процентное содержание меди. Латунь Л80 содержит 80% меди и 20% цинка. Простые латуни поставляются в виде листов, ленты, прутков, проволоки и согласно ГОСТ 15527-70 имеют обозначение Л96, Л90…..Л59.

Рис.1. Диаграмма состояния системы CuZn.

Специальные (многокомпонентные) латуни содержат и другие легирующие элементы: алюминий (Al), никель (Ni). Марганец (Mn), олово (Sn) и др. Алюминий, кремний, марганец и никель повышают механические свойства латуни и сопротивление коррозии, а свинец улучшает обрабатываемость резанием. В специальных латунях после буквы «Л» следуют буквы русского алфавита, обозначающие легирующий элемент: А-Al, Н-Ni, К – Si, С – Pb, О – Sn, Ж – Fe, МnMц, Ф – Р, Б – Ве, Ц – Zn. После букв ставятся цифры, показывающие среднее содержание меди и легирующих элементов в %. Например: ЛК 80-3 содержит 80% меди + 3% кремния + 17% цинка.

Рис. 15.4 Влияние содержания цинка на свойства латуней.

Простые и специальные латуни относятся к деформируемым сплавам и используются как конструкционный материал там, где требуются высокая прочность и коррозионная стойкость: в трубопроводной арматуре, в химическом машиностроении и особенно в судостроении. Изготавливают из латуней листы, ленту, проволоку, а затем из этого проката – радиаторные трубки, снарядные гильзы, трубопроводы, шайбы, гайки, втулки, уплотнительные кольца, токопроводящие детали электрооборудования.

Кроме деформируемых латуней применяются и литейные латуни, которые содержат большое количество добавок для улучшения литейных свойств. Их обозначение отличается от деформируемых латуней. В них содержание компонента указывается после буквы обозначения: ЛЦ40Мц3Ж – содержит 40% цинка, 3% марганца, 1% железа, остальное – медь.

Механические свойства литейных латуней существенно зависят от способа получения отливок – песчано-глинистые формы, керамические или кокиль. Из литейных латуней изготавливают паровые и воздушные клапаны, корпуса кранов, пробки топливной и воздушной аппаратуры.

Бронзы – это сплавы меди со всеми другими элементами: оловом, алюминием, кремнием, бериллием и др. Бронзы различают по химическому составу и состоянию обработки. В некоторых случаях прочность таким способом может быть повышена до 750 МПа, по сравнению с обычной прочностью двухкомпонентных бронз- 400-500МПа.

Бронзы называют по наличию легирующего элемента в её ставе: алюминиевые, оловянистые, кремнистые, бериллиевые и т.д. Бронзы маркируют «Бр» (бронза) за которыми следуют буквы и цифры, указывающие на название и содержание в % легирующих элементов. Например: Бр ОЦС 4-4-2,5 - 4% олова + 4% цинка + 2,5% свинца, остальное медь. Бр КМц 3-1 - 3% кремния + 1% марганца, остальное медь и т.д.

Оловянистые бронзы известны ещё в бронзовом веке. Они как и другие сплавы делятся на деформируемые <10% Sn и литейные >10% Sn. В прошлом бронзы получили название в зависимости от их назначения: колокольная (20-30% олова), зеркальная (30-35% олова), монетная (4-10% олова), пушечная (8-18% олова). Оловянистые бронзы отличаются хорошими литейными свойствами – малой усадкой. С целью экономии олова в бронзы добавляют цинк в таком количестве, чтобы он полностью растворялся в меди, образуя твёрдый раствор, тем самым повышая механические свойства. Для улучшения обрабатываемости резанием в оловянистые бронзы добавляют свинец (БрО6Ц4С17 – олово-6%, цинк – 4%, свинец – 17%, остальное, медь). Литейные оловянистые бронзы применяются для пароводяной арматуры, обладая высокой коррозионной стойкостью в воде и на воздухе.

Деформируемые оловянистые бронзы характеризуются более низким содержанием олова Бр ОЦ4 -3 –олово-4%, цинк-3%, остальное медь и имеют однофазную структуру твёрдого раствора. После холодной обработки давлением бронзы подвергаются отжигу при 600-7000С. Они пластичны и более прочны, чем литейные. Кроме того, деформируемые оловянистые бронзы обладают высокими упругими свойствами, поэтому их используют для получения пружин, мембран и др.

Алюминиевые бронзы обычно содержат от 5 до 10% алюминия. Механические и коррозионные свойства этих бронз выше, чем у оловянистых. Алюминиевые бронзы можно подвергать закалке и старению. Однофазные алюминиевые бронзы (БрА7) более пластичны, чем двухфазные и относятся к деформируемым. Они обладают высокой прочностью и пластичностью (σв= 400-450МПа, δ= 60%).

Легируют алюминиевые бронзы железом, никелем, марганцем и др. для устранения литейных недостатков и увеличения механических свойств после упрочняющей термической обработки (закалка + старение). Например, у бронзы БрАЖН 10-4-4 твёрдость увеличивается от 1500НВ до 4000НВ, и из неё изготавливают седла клапанов, направляющие втулки, шестерни и др.

Кремнистые бронзы содержат до 3% кремния и являются заменителями оловянистых бронз, их дополнительно легируют никелем и марганцем. Обладая высокой упругостью и антикоррозионными свойствами эти бронзы применяются для изготовления упругих элементов различных механизмов. Из бронзы БрКМц 3-1 изготавливаются стопорные и упорные кольца насосов, мембраны датчиков давления.

Свинцовые бронзы обладают высокими антифрикционными свойствами, хорошей теплопроводностью (Бр С30). Поэтому из этих бронз изготавливают вкладыши подшипников, работающих при больших давлениях и скоростях.

Бериллиевые бронзы содержат не более 2,5% бериллия (БрБ2).Бериллий образует с медью твёрдый раствор переменной растворимости и, следовательно, такие бронзы можно подвергать упрочняющей термической обработке (закалка 7800С + старение 3200С). После термической обработки повышаются как прочностные, так и упругие свойства: σв = 1500МПа, τ упр.= 600-740МПа. Бериллиевую бронзу применяют в виде пружин в часовых механизмах, электроаппаратуре, в качестве упругих контактов.


 

А также другие работы, которые могут Вас заинтересовать

28480. Стандартні форми задач лінійного програмування 27.15 KB
  Існуючі методи розв'язування ЗЛП передбачають певні вимоги на систему основних обмежень в силу чого розрізняють дві стандартні форми ЗЛП: Іа з обмеженнямирівняннями в такому вигляді розв'язуються задачі з допомогою універсальних методів реалізованих на персональних комп'ютерах; ІІа з обмеженняминерівностями використовується в теоретичних дослідженнях і для геометричної ілюстрації; Лема 1. Будьяка задача ЛП може бути приведена до рівносильної задачі ЛП яка записана в 1й стандартній формі. Будьяка ЗЛП може бути зведена до...
28481. Основні властивості розв’язків задач лінійного програмування 19.37 KB
  Основні властивості розвязків задач лінійного програмування. Множина розв'язків нерівності заповнює суцільно одну із півплощин на які ділить площину гранична пряма аі1 x1 ai2 Х2= b Леми 1 та 2 дозволяють сформулювати:Властивість 1. Сукупність допустимих розв'язків задачі ] 2 заповнює опуклий многокутник або є порожньою множиною. Оптимальним розвязком задачі ] 2називається такий її допустимий план на якому цільова функція 1 досягає екстремального найбільшого або найменшого значення.
28482. Алгоритм графічного методу розв’язування задач лінійного програмування 11.86 KB
  Алгоритм графічного методу розвязування задач лінійного програмування. Графічний метод ґрунтується на геометричній інтерпретації ЗЛП і застосовується в основному при розв'язуванні задач в R2 і тільки деяких задач трьохмірного простору оскільки в R3 досить важко побудувати многогранник допустимих розв'язків що утворюється в результаті перетину півпросторів. Якщо ж ЗЛП записана в І стандартній формі система рівнянь якої містить n невідомих і m лінійно незалежних рівнянь то вона також може бути розв'язана графічним методом всякий раз коли...
28484. Ідея симплексного методу та його геометрична інтерпретація 14.2 KB
  Проте задачі лінійного програмування які доводиться розв'язувати на практиці характеризуються великими числами m та n а кількість опорних планів обмежена зверху числом Тому доцільніше було б вказати таку схему послідовного покрашення опорного плану що при переході від одного опорного плану вершини многогранника допустимих розв'язків до іншого опорного плану іншої вершини отримується збільшення цільової функції при максимізації функції 1 і зменшення її при мінімізації функції 1. Саме...
28485. Алгоритм симплексного методу 23.31 KB
  Заповнення початкової симплекстаблиці перша ітерація Таблиця 1 В рядках 1 3 записані відповідні рівняння системи 12 при цьому спочатку права частина в стовпці опорний план а потім коефіцієнти при відповідних змінних. Отже з початкової таблиці безпосередньо виписується початковий опорний план: Х1 оп = 0; 0; 182; 316; 238. В нульовому рядку міститься інформація про цільову функцію: для зручності функція 11 розглядається формалізовано як рівняння z 18х1 16х2 = О...
28486. Постановка транспортної задачі та її математична модель 31.64 KB
  Постановка транспортної задачі та її математична модель. Побудуємо математичну модель закритої транспортної задачі Позначимо через xij кількість одиниць вантажу запланованого до перевезення від iго постачальника до jго споживачаz сумарну вартість запланованих перевезень Для зручності умову задачі запишемо у вигляді таблиці табл 1 яку надалі будемо називати транспортною сіткою При цьому постачальників скорочено позначимо літерою П а споживачів С Таблиця 1...
28487. Методи побудови початкового опорного плану транспортної задачі 21.99 KB
  Рекомендуємо олівцем проставити прочерки в клітинках А2 В1 і А3 В1 потреби В1 задоволені а біля 300 справа записати залишки запасів в розмірі 150 од. запасів і 220 од. В напрямку який визначає діагональ переходимо до А2В2 в яку записуємо min70 230=70 виставивши прочерк в А3 В2 закресливши залишок потреб під В2 і записавши справа від 230 залишок запасів 23070=160. В клітинку А2В3 заносимо min 160 280= 160 виставляємо прочерк в А2В4 закреслюємо залишок запасів А2 160 а під потребами В3 записуємо залишок потреб В3 в розмірі...