11361

Неметаллические материалы. Полимеры и пластмассы

Лекция

Производство и промышленные технологии

Лекция 15 Неметаллические материалы. Полимеры и пластмассы Полимеры от греческого polymeres – состоящий из многих частей многообразный от poly – много и meros – доля часть – соединения с высокой молекулярной массой молекулы которых состоят из большого числа регулярно ил...

Русский

2013-04-07

268.83 KB

23 чел.

Лекция 15

Неметаллические материалы. Полимеры и пластмассы

Полимеры (от греческого polymeres – состоящий из многих частей, многообразный, от poly – много, и meros – доля часть) – соединения с высокой молекулярной массой, молекулы которых состоят из большого числа регулярно или нерегулярно повторяющихся групп атомов - звеньев.

Молекулы, состоящие из многочисленных элементарных звеньев (мономеров) одинакового химического состава и структуры называются макромолекулами. Свойства вещества определяются не только химическим составом этих макромолекул, но и их взаимным расположением и строением. Поперечное сечение макромолекулы составляет, как правило, несколько нанометров, а длина достигает нескольких тысяч нанометров или нескольких микрометров, поэтому макромолекулы обладают хорошей гибкостью.

По форме макромолекул полимеры делят на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые (рис. 1). Полимеры с линейной структурой эластичны, при нагревании размягчаются, растворимы в органических растворителях. Полимеры с сетчатой структурой обладают наибольшей прочностью и теплостойкостью.

По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.

Аморфные полимеры однофазны и построены из цепных молекул, собранных в пачки. Пачка состоит из многих рядов макро молекул, расположенных последовательно друг за другом. Пачки способны перемещаться относительно соседних элементов, так как они являются структурными элементами.

Рис. 1. Форма макромолекулы полимеров: а – линейная; б – разветвленная; в – ленточная; г – пространственная, сетчатая, д – паркетная

В случае образования кристаллической структуры атомы соседних цепей расположены в правильном трехмерном порядке, образуя определенную пространственную решетку. Кристаллические участки полимера чередуются с аморфными, поэтому степень кристалличности в полимерах никогда не достигает 100%, в отличие от металлов. Кристалличность сообщает полимеру большую жесткость и твердость, а также теплостойкость. При длительном хранении, эксплуатации и переработке надмолекулярные структуры могут претерпевать изменения.

По полярности полимеры подразделяют на полярные и неполярные. Полярность определяется наличием в их составе диполей − разобщенных центров распределения положительных и отрицательных зарядов.

Неполярные полимеры (на основе углеводородов) являются высококачественными высокочастотными диэлектриками, они обладают хорошей морозостойкостью. Полярность сообщает полимерам жесткость, теплостойкость, но морозостойкость у полярных материалов низкая.

Рис. 2. Схематичное строение пачки: а – объединение макромолекул в пачки;
б – пачка с аморфным участком

Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.

Термопластичные полимеры при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим. Структура макромолекул таких полимеров линейная или разветвленная.

Термореактивные полимеры на первой стадии образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми.

Для удобства изучения связи, состава, структуры со свойствами полимеров их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.

Органическими полимерами являются смолы и каучуки. Элементоорганические соединения содержат в составе основной цепи неорганические атомы (Si, Тi, А1), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость.

К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, кальция и др.

Пластические массы, пластмассы, пластики – материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления формоваться в изделия сложной конфигурации и затем устойчиво сохранять приданную форму.

Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения,  что позволяет изменять характеристики пластиков в достаточно широких пределах.

По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол.

Термопласты удобны для переработки в изделия, имеют незначительную усадку при формовании (1-3%). Материал отличается большой упругостью и малой хрупкостью. Обычно термопласты изготавливают без наполнителя. Но в последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).

Реактопласты после отверждения и перехода связующего вещества в термостабильное состояние хрупки, часто дают большую усадку (до 10 – 15%) при их переработки.

Особенностями пластмасс являются малая плотность, низкая теплопроводность, значительное тепловое расширение (в 10 – 30 раз больше, чем у стали), хорошие электроизоляционные свойства, высокая химическая стойкость, высокие фрикционные и антифрикционные свойства, меньшее количество отходов.

Недостатками пластмасс являются невысокая теплостойкость (максимальная температура эксплуатации термопластов − до 250 ºС, термореактивных пластмасс – до 400 ºС), низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, склонность к старению, т.е. к изменению свойств с течением времени.

Резиновые и клеящие материалы

Резиной (от латинского resina – смола) называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками (наполнители, пластификаторы, активаторы вулканизации, антиоксиданты и др.).

Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку. Она способна к очень большим деформациям (относительное удлинение достигает 1000 %), которые почти полностью обратимы.

Кроме отмеченных особенностей, для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты).

Механические свойства резины (прочность при растяжении, напряжение при заданном относительном удлинении, твердость, износостойкость, усталостная выносливость и др.) в значительной степени зависят от состава резиновой смеси.

Резину подразделяют на две группы:

  1.  Резины общего назначения, применяемые в производстве шин, конвейерных лент, ремней, рукавов, изделий бытового назначения.

2. Резины специального назначения, используемые для получения разнообразных изделий, которые должны обладать одним или несколькими специальными свойствами (маслобензостойкость, морозостойкость, износостойкость и др.)

Резиновые клеи  - это растворы каучуков или резиновых смесей в органических растворителях. В зависимости от типа каучука, на основе которого готовят клей, различают резиновые клеи специального и общего назначения. По температуре вулканизации (отверждения) резиновые клеи делят на клеи горячего (больше 100 оС) и холодного отверждения. Резиновые клеи применяют при сборке резиновых и резинотканевых изделий, в производстве резиновых тканей и т.д.

Герметики, герметизирующие составы - полимерные композиции, применяемые для обеспечения непроницаемости болтовых или заклепочных соединений металлических конструкций, стыков между панелями наружных стен зданий и т.д. Герметики широко применяют  в авиации, автомобилестроении, судостроении, строительстве. Они используются также в областях, не связанных с их основным назначением, например для изготовления точных слепков и отливок в технике зубопротезирования и криминалистике.

Стекло, ситаллы, графит

Стекло неорганическое – прозрачный (бесцветный или окрашенный) хрупкий материал, получаемый при остывании расплава, содержащего стеклообразующие компоненты ( оксиды кремния, бора, алюминия, фосфора, титана, циркония и др.). и оксиды металлов (лития, калия, свинца, кальция, магния и др.). По типу стеклообразующего компонента различают стекло неорганическое силикатное (на основе SiO2), боратное (В2О3), боросиликатное, алюмосиликатное и др.(рис. 3).

Рис. 3. Схема непрерывной структурной сетки стекла: а – кварцевого, б – натриево-силикатного

Благодаря возможности придавать неорганическому стеклу разнообразные свойства, оно широко распространено в различных отраслях техники, строительстве, декоративного искусства и быту.

Стекло органическое – техническое название прозрачных пластмасс на основе полистирола, поливинилхлоридов, поликарбонатов и др. По сравнению с неорганическим стеклом стекло органическое отличается относительно небольшой плотностью и повышенной прочностью. Органическое стекло малочувствительно к ударам, толчкам и не дает опасных осколков. Применяется для изготовления 3-слойного стела для остекления самолетов, автомобилей и др. Из него изготавливаю детали приборов, линзы, светофильтры и бытовые изделия.

Термин «ситаллы» образован от слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. Ситаллы получают на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов — более мелкозернистой и однородной микрокристаллической структурой (рис. 4).

Рис. 4. Схема кристаллизации стекла при образовании ситаллов с помощью катализаторов

Ситаллы получают путем плавления стекольной шихты специального состава с добавкой катализаторов, охлаждения расплава до пластичного состояния и формования из него изделий методами стекольной технологии и последующей кристаллизации. Ситалловые изделия получают также порошковым методом спекания.

В отличие от обычного стекла, свойства которого определяются в основном его химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситаллов изотропны. В них совершенно отсутствует всякая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам. Материалы обладают высокой химической устойчивостью к кислотам и щелочам, высокой жаростойкостью. Они газонепроницаемы и обладают нулевым водопоглощением. Хорошие диэлектрики.

Жаропрочность ситаллов под нагрузкой составляет 800–1200 ºС. Ударная вязкость ситаллов выше, чем ударная вязкость стекла (4,5-10,5 кДж/м2), однако они являются хрупкими материалами. Обладают высокой твердостью (микротвердость 7000-10500 МПа) и износостойкостью.

Применение ситаллов определяется их свойствами. Из ситаллов изготовляют подшипники, детали для двигателей внутреннего сгорания, трубы для химической промышленности, оболочки вакуумных электронных приборов, детали радиоэлектроники. Ситаллы используют в качестве жаростойких покрытий.

Графит – минерал, наиболее устойчивая кристаллическая модификация чистого углерода. Это полимерный материал кристаллического пластинчатого строения. Он образован параллельными слоями гексагональных сеток (плоскостей) (рис. 5).

Рис. 5. Кристаллическая решетка графита

Графит встречается в природе, а также получается искусственным путем. Физико-механические свойства искусственного графита зависят от природы исходного сырья, технологии получения, плотности, степени ориентации кристаллов и др.

В качестве исходных материалов при производстве технического графита применяют твердое сырье — нефтяной кокс и каменно угольный пек в качестве связующего вещества. Заготовки формуются в процессе прессования или выдавливания. Процесс графитизации осуществляется путем нагрева заготовок (обожженных при 1200 °С) до 3000 °С.

Графит используется в производстве плавильных тиглей, электродов, карандашей, в атомных ректорах, а также для получения синтетических алмазов.

Композиционные материалы.

Композиционными материалами или композитами называют материалы, состоящие из сильно различающихся по свойствам друг от друга, взаимно нерастворимых компонентов.

Традиционно применяемые сплавы в известной мере достигли своего предела конструктивной прочности. Развитие современной техники требует создания материалов, надежно работающих в сложной комбинации силовых и температурных полей, при воздействии агрессивных сред, излучений, глубокого вакуума и высоких давлений. Эту задачу можно осуществить путем создания композиционных материалов.

Создание сложных композиционных материалов относится к древним временам, к началу развития человеческой цивилизации. Общепризнано, что техническое развитие древнего мира определялось двумя жизненно важными условиями: наличием необходимых материалов и возможностью обмена информацией. Отсутствие одного из этих условий приводило к практическому прекращению развития общества.

Первые, высушенные на солнце кирпичи и гончарные изделия, появившиеся за 5000 лет до н. э., уже были сложными композиционными материалами. Для их изготовления в глину часто добавляли измельченные камни или материалы органического происхождения, чтобы уменьшить усадку и растрескивание при обжиге. Первые армированные материалы на полимерной основе использовались вавилонянами в период от 4000 до 2000 лет до н. э. Это были строительные материалы на основе армированной битумной смолы. Имеются сведения, что монгольские луки изготавливались из большого количества различных материалов, в том числе из сухожилий животных, древесины и шелка, соединенные с помощью клея. Стволы дамасских пушек и японские церемониальные мечи также изготавливались из композиционных материалов. Характерным примером могут служить датские телеги последнего столетия до н. э., в которых использовалась довольно сложная комбинация из дерева и бронзы в качестве подшипников скольжения.

Таким образом, начало технологии композиционных материалов уходит в античные времена. Это в первую очередь технология полимерных композиционных материалов, являющихся наиболее древними из всех. Если при этом учесть, такие композиционные материалы, как дерево, кость, и т. п., то не будет преувеличением сказать, что развитие современной техники и технологии было бы невозможным без композиционных материалов.

Композиционные материалы состоят из сравнительно пластичного матричного материала и более твердых и прочных веществ, являющихся упрочняющими наполнителями. Матрица связывает композицию и придает ей нужную форму. В зависимости от материала матрицы различают композиционные материалы с металлической матрицей или металлические композиционные материалы (МКМ), с полимерной - полимерные композиционные материалы (ПКМ) и с керамической - керамические композиционные материалы (ККМ). По типу упрочняющих наполнителей композиционные материалы подразделяют на дисперсноупрочненные, армированные (волокнистые) и слоистые (рис. 6). В дисперсноупрочненные композиционные материалы искусственно вводят мельчайшие равномерно распределенные тугоплавкие частицы карбидов, оксидов, нитридов и другие, не взаимодействующие с матрицей и не растворяющиеся в ней вплоть до температуры плавления фаз. Чем мельче частицы наполнителя и меньше расстояния между ними, тем прочнее композиционный материал. В дисперсноупрочненных композиционных материалах матрица является основным несущим элементом.

Арматурой в армированных композиционных материалах могут быть волокна различной формы (нити, ленты, сетки разного плетения). Прочность таких композиционных материалов определяется прочностью армирующих волокон, которые воспринимают основную нагрузку. Армирование дает больший прирост прочности, но дисперсное упрочнение технологически легче осуществимо.

Рис. 6. Схема строения композиционных материалов: а – дисперсноупрочненные;
б - волокнистые; в - слоистые

Слоистые композиционные материалы набираются из чередующихся слоев волокон и листов матричного материала (типа «сэндвич»). Слои волокон в таком композиционном материале могут иметь различную ориентацию. Возможно поочередное использование слоев матрицы из сплавов с различными механическими свойствами.

Из освоенных промышленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.

Композиционные материалы с металлической матрицей

К этому виду композиционных материалов относятся материалы типа САП (спеченная алюминиевая пудра), которые представляют собой алюминий, упрочненный дисперсными частицами оксида алюминия. Алюминиевый порошок получают распылением расплавленного металла с последующим измельчением в шаровых мельницах до размера около 1 мкм в присутствии кислорода. С увеличением длительности помола пудра становится мельче и в ней повышается содержание оксида алюминия. Дальнейшая технология производства изделий и полуфабрикатов из САП включает холодное прессование, предварительное спекание, горячее прессование, прокатку или выдавливание спеченной алюминиевой заготовки в форме готовых изделий, которые можно подвергать дополнительной термической обработке.

Сплавы типа САП применяют в авиационной технике для изготовления деталей с высокой удельной прочностью и коррозионной стойкостью, работающих при температурах до 300 − 500 °С. Из них изготавливают штоки поршней, лопатки компрессоров, оболочки тепловыделяющих элементов и трубы теплообменников.

Армирование алюминия и его сплавов стальной проволокой повышает их прочность, увеличивает модуль упругости, сопротивление усталости и расширяет температурный интервал службы материала.

Армирование короткими волокнами проводят методами порошковой металлургии, состоящими из прессования с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич, состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку.

Весьма перспективным материалом является композиция алюминий-бериллиевая проволока в которой реализуются высокие физико-механические свойства бериллиевой арматуры и, в первую очередь, ее низкая плотность и высокая удельная жесткость. Получают композиции с бериллиевой проволокой диффузионной сваркой пакетов из чередующихся слоев бериллиевой проволоки и матричных листов. Из алюминиевых сплавов, армированных стальной и бериллиевой проволоками, изготавливают корпусные детали ракет и топливные баки.

В композиции «алюминий — углеродные волокна» сочетание низкой плотности арматуры и матрицы позволяет создать композиционные материалы с высокой удельной прочностью и жесткостью. Недостатком углеродных волокон является их хрупкость и высокая реакционная способность. Композицию алюминий — углерод получают пропиткой углеродных волокон жидким металлом или методами порошковой металлургии. Технологически наиболее просто осуществимо протягивание пучков углеродных волокон через расплав алюминия.

Композит алюминий—углерод применяют в конструкциях топливных баков современных истребителей. Благодаря высокой удельной прочности и жесткости материала масса топливных баков уменьшается на 30 %. Этот материал используют также для изготовления лопаток турбин авиационных газотурбинных двигателей.

Композиционные материалы с неметаллической матрицей

Композиционные материалы с неметаллической матрицей нашли широкое применение в промышленности. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная, полиамидная. Угольные матрицы коксованные или получают из синтетических полимеров, подвергнутых пиролизу (разложение, распад). Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и др.), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними.

Содержание упрочнителя в ориентированных материалах составляет 60 − 80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20 − 30 об. %. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиге и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоскостные слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создавать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей (рис. 7). Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.

Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем расположения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырех направленных материалов сложнее, чем трех направленных.

Рис. 7. Схема армирования композиционных материалов: 1- прямоугольная,
2-гексагональная, 3- косоугольная, 4- с искривленными волокнами, 5 – система из
n нитей

Наиболее эффективными с точки зрения использования в самых жестких условиях сухого трения являются антифрикционные материалы на основе политетрафторэтилена (ПТФЭ).

Для ПТФЭ характерен достаточно высокий статический коэффициент трения, однако в процессе трения скольжения на поверхности ПТФЭ образуется очень тонкий слой высоко-ориентированного полимера, способствующий выравниванию статического и динамического коэффициентов трения и плавному движению при скольжении. При изменении направления скольжения наличие ориентированной поверхностной пленки вызывает временное увеличение коэффициента трения, значение которого снова уменьшается по мере переориентации поверхностного слоя. Такое поведение ПТФЭ при трении обусловило его широкое применение в промышленности, где главным образом используют не наполненный ПТФЭ для производства подшипников. Во многих случаях не смазываемые подшипники должны работать при более высоких скоростях трения. При этом для не наполненного ПТФЭ характерны высокие значения коэффициента трения и скорости износа. В качестве материалов для не смазываемых подшипников, работающих в таких условиях, широкое применение нашли композиционные материалы, чаще всего на основе ПТФЭ.

Наиболее простым путем уменьшения относительно высокой скорости износа ПТФЭ при сухом трении является введение порошкообразных наполнителей. При этом повышается сопротивление ползучести при сжатии и наблюдается значительное увеличение износостойкости при сухом трении. Введение оптимального количества наполнителя позволяет повысить сопротивление износу до 104 раз.

Полимеры и композиционные материалы на их основе обладают уникальным комплексом физико-механических свойств , благодаря которым они успешно конкурируют с традиционными конструкционными сталями и сплавами, а в ряде случаев без применения полимерных материалов невозможно обеспечить требуемые функциональные характеристики и работоспособность специальных изделий и машин. Высокая технологичность и малая энергоемкость технологий переработки пластмасс в изделия в сочетании с выше названными достоинствами ПКМ делают их весьма перспективными материалами для деталей машин различного назначения.


 

А также другие работы, которые могут Вас заинтересовать

46222. Деловые переговоры, их виды. Процесс переговоров и его этапы 14.63 KB
  Основы устного общения. Культура речи понятие объединяющее владение языковой нормой устного и письменного языка а также умение использовать выразительные языковые средства в разных условиях общения. Виды речи классификация компонентов речевого общения. Принципы устного общения: Создайте комфортную и не отвлекающую внимание больного обстановку.
46223. Система сбалансированных показателей результативности закупочной логистики 14.61 KB
  Система сбалансированных показателей результативности закупочной логистики. Суть системы сбалансированных показателей Blnced Scorecrd или показателей результативности состоит в том что показатели которые предприятие использует для оценки результативности своей деятельности должны быть не только баслансированными но и соответствовать цели которую ставит перед собой предприятие. Система сбалансированных показателей задумана еѐ авторами Роберт Каплан и Девид Нортон как инструмент реализации стратегии развития предприятия. В...
46224. PR как вид публичных коммуникаций и понятие публичной сферы 14.57 KB
  На протяжении человеческой истории сфера публичной коммуникации функционировала как сфера где зарождались и реализовывались практики которые сегодня могут рассматриваться как предшественники и прототипы PR. Публичная сфера это то доступное для граждан место где формируется общественное мнение. В трактовке западных исследователей понятие публичная сфера выглядит так: Публичная сфера это определенное пространство место в котором различные социальные системы правительство партии профсоюзы массмедиа ведут общественную дискуссию...
46226. Структура языкового знака. Аспекты знакового отношения (семантический треугольник Огдена и Ричардса) 14.56 KB
  Структура языкового знака. Таково определение языкового знака предлагаемое словарем 1 167. Значение знака идеально его внешняя форма материальна. Оптимальным способом анализа языкового знака в контексте данной работы является его осмысление как чисто субъективной субстанции существующей исключительно внутри сознания человека.
46227. Историческое развитие лексического состава языка. Источники пополнения словарного запаса 14.55 KB
  Историческое развитие лексического состава языка. Формами существования языка являются: территориальные диалекты говоры наддиалектные языковые образования койне различные социальные диалекты профессиональная речь профессиональные арго тайные корпоративные языки кастовые языки просторечие молодежное арго обиходноразговорная речь литературный язык. В принципе все формы существования языка исключая тайные языки доступны пониманию в пределах данного народа. Формы существования языка различаются между собой составом языковых...
46228. Вариантные обобщения 14.54 KB
  Вариантные обобщения. Обобщение данных состоит из основы обобщения к которой присоединяются различные основы специализаций. Но чаще всего обобщения на основе общего ресурса строится таким образом что начальный адрес для всех размещаемых объектов является одинаковым. Вариантное обобщение Вариант основа обобщения данных в процедурном подходе.
46229. Ввод-вывод в терминал. Работа со строками. Работа с файлами 14.5 KB
  Обмен данными между программой и внешними устройствами осуществляется с помощью операций вводавывода. В языке Си нет особых операторов для ввода или вывода данных. Вместо этого имеется набор классов стандартно поставляемых вместе с компилятором которые и реализуют основные операции вводавывода. Библиотека классов для вводавывода решает две задачи.